WHAT SHOULD YOU DO IF YOU ARE RAPED OR SEXUALLY ASSAULTED?

1. Go to a safe place where you can get help
2. Tell someone you trust what happened as soon as possible
3. Do not throw away your clothes or wash yourself
4. Put the clothes you were wearing in a paper bag or wrap them in newspaper
5. Go to a hospital as soon as possible
6. It is advisable to report the rape to the police
7. Tell the police if you are threatened by the perpetrator at any time
8. Get treatment and medication within 72 hours to prevent HIV, other sexually transmitted infections, and pregnancy

REMEMBER, IT'S NEVER THE FAULT OF THE PERSON WHO WAS RAPED, ABUSED, VIOLATED OR HARASSED!

GET HELP AND SUPPORT

If you or someone you know is being sexually harassed or abused, get help to stop the abuse. Speak to someone you trust, tell your school, go to your local police station or phone one of the following national numbers:

SAPS Crime Stop: 086 000 111
SAPS Emergency Number: 10111
Childline: 0800 055 555
Lifeline: 011 781 2337/0861 322 322
Department of Basic Education National Hotline: 0800 20 29 33

GET HELP AND SUPPORT
ACT AGAINST ABUSE
Contents

These workbooks have been developed for the children of South Africa under the leadership of the Minister of Basic Education, Dr Angie Motshekga, and the Deputy Minister of Basic Education, Dr Reginah Mhaule.

We wish you and your learners every success in using these workbooks. We sincerely hope that children will enjoy working through the book as they grow and learn, and that you, the teacher, will share their pleasure.

We hope that teachers will find these workbooks useful in their everyday teaching and in ensuring that their learners cover the curriculum. We have taken care to include the teacher through each of the activities by the inclusion of icons that indicate what the teacher should do.

We sincerely hope that children will enjoy working through the book as they grow and learn, and that you, the teacher, will share their pleasure.

These workbooks have been developed for the children of South Africa under the leadership of the Minister of Basic Education, Dr Angie Motshekga, and the Deputy Minister of Basic Education, Dr Reginah Mhaule.

We wish you and your learners every success in using these workbooks. We sincerely hope that children will enjoy working through the book as they grow and learn, and that you, the teacher, will share their pleasure.

We hope that teachers will find these workbooks useful in their everyday teaching and in ensuring that their learners cover the curriculum. We have taken care to include the teacher through each of the activities by the inclusion of icons that indicate what the teacher should do.

We sincerely hope that children will enjoy working through the book as they grow and learn, and that you, the teacher, will share their pleasure.

These workbooks have been developed for the children of South Africa under the leadership of the Minister of Basic Education, Dr Angie Motshekga, and the Deputy Minister of Basic Education, Dr Reginah Mhaule.

We wish you and your learners every success in using these workbooks. We sincerely hope that children will enjoy working through the book as they grow and learn, and that you, the teacher, will share their pleasure.

We hope that teachers will find these workbooks useful in their everyday teaching and in ensuring that their learners cover the curriculum. We have taken care to include the teacher through each of the activities by the inclusion of icons that indicate what the teacher should do.

We sincerely hope that children will enjoy working through the book as they grow and learn, and that you, the teacher, will share their pleasure.
Grade 7

Mathematics

Book 1

1 Revision worksheets: R1 to R16
 Key concepts from Grade 6

2 Worksheets: 1 to 64

Book 2

3 Worksheets: 65 to 144

Name:
3. Fill up the hundreds.

Example: 562

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

4. Calculate the following:

Example:

\[\begin{align*}
2 \times 5 & = 10 \\
3 \times 4 & = 12 \\
5 \times 2 & = 10 \\
4 \times 3 & = 12 \\
\end{align*} \]

\[\begin{align*}
2 \times 5 & = 10 \\
3 \times 4 & = 12 \\
5 \times 2 & = 10 \\
4 \times 3 & = 12 \\
\end{align*} \]

\[\begin{align*}
2 \times 5 & = 10 \\
3 \times 4 & = 12 \\
5 \times 2 & = 10 \\
4 \times 3 & = 12 \\
\end{align*} \]
Grade 7

Mathematics

Revision
Key concepts from Grade 6

WORKSHEETS R1 to R16

Name:
Represent nine-digit numbers

Type a nine-digit number into your calculator. Do not use zeros. Then, one by one, change each of the following to zero, the:
- hundred thousands
- units
- millions
- ten thousands
- tens
- ten millions
- hundreds
- thousands

I wonder how many digits a cellphone calculator can take?

1. What is the value of the underlined digit?

Example: 7 63 104

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 340 784</td>
<td>b. 512 973 715</td>
<td>c. 1 517 451</td>
<td></td>
</tr>
<tr>
<td>d. 476 123 000</td>
<td>e. 451 783 215</td>
<td>f. 998 999 999</td>
<td></td>
</tr>
</tbody>
</table>

2. Write the following in expanded notation:

Example: 942 576

= 900 000 + 40 000 + 2 000 + 500 + 70 + 6

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 154 798 105</td>
<td>b. 592 562</td>
<td>c. 4 978 879</td>
<td></td>
</tr>
<tr>
<td>d. 77 666</td>
<td>e. 549 327</td>
<td>f. 4 000 009</td>
<td></td>
</tr>
</tbody>
</table>
3. What is the value of 5 in each of the following numbers?

Example: 532 789
500 000

a. 154 289
 b. 5 834 974
 c. 45 869

d. 413 978 950
 e. 563 008
 f. 8 382 705

4. Complete the following:

Example: 297 654 – 50 = 297 604

a. 378 457 ____ = 308 457
 b. 421 873 ____ = 401 873
 c. 887 114 ____ = 887 100

d. 316 522 ____ = 96 522
 e. 124 893 ____ = 100 893
 f. 737 896 ____ = 732 096

5. Complete the table. Always add and subtract from the number given in the first column.

<table>
<thead>
<tr>
<th></th>
<th>Add 10</th>
<th>Subtract 10</th>
<th>Add 100</th>
<th>Subtract 100</th>
<th>Add 1 000</th>
<th>Subtract 1 000</th>
<th>Add 10 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>475 021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>835 296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>789 123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>336 294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>428 178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>164 228</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem solving

Find numbers with four or more digits in a newspaper. Write each number in expanded notation. Write down what the number was measuring or used for.
Things to know and to discuss!
What do the following symbols mean?

> < =

Give an example of each using numbers.

1. Arrange these numbers in ascending order on the number line:
 17 235, 17 347, 18 212, 17 922, 17 211, 17 678.

 a. What is the difference between the fourth and sixth number on the number line?

 b. What is halfway between the third and fifth interval on the number line?

 c. Write a whole number bigger than the fourth number, but smaller than the fifth number.

 d. Which is the smallest number?

 e. Which is the biggest number?

2. Arrange these numbers in ascending order on this number line:
 1 782, 2 342, 1 699, 1 571, 2 102, 1 999

 a. What is the smallest number?

 b. What is the biggest number?
3. Arrange these numbers in ascending order on the number line:
34 289, 34 288, 34 287, 34 286, 34 285, 34 284

a. What is the smallest number?

b. What is the biggest number?

c. What is the difference between the biggest and smallest numbers?

d. Give one whole number smaller than the smallest number.

e. Give one whole number bigger than the biggest number.

f. What is the sum of the second number and the fourth number on this number line?

4. Fill in the missing numbers:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>30 000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>37 000</td>
<td></td>
</tr>
<tr>
<td>45 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70 000</td>
<td></td>
</tr>
</tbody>
</table>

continued
5. Which number is halfway?

Example:

```
471 340  471 345  471 350
```

a. 21 208 21 224

b. 318 970 319 070

c. 12 897 13 897

6. Which number comes next?

Example: 593 485, 593 486, 593 487, 593 488, 593 489

```
299 999, 299 998, 299 997, 299 996
```

a. 331 344; 331 345; 331 346; 331 347; 331 348;

b. 549 327; 549 326; 549 325; 549 324;

c. 508 609; 508 610; 508 611; 508 612; 508 613;

7. Write in ascending order:

Example: 289 541, 289 540, 289 539, 289 542, 289 538

```
289 538, 289 539, 289 540, 289 541, 289 542
```

a. 421 178; 421 182; 421 180; 421 183; 421 179; 421 181
8. Write in descending order:

Example: 289 541; 289 540; 289 539; 289 542; 289 538
 289 542; 289 541; 289 540; 289 539; 289 538

 a. 564 743; 564 747; 564 745; 564 744; 564 746
 b. 907 569; 907 566; 907 570; 907 568; 907 567
 c. 352 701; 352 699; 352 703; 352 700; 352 702

9. Fill in >, < or =:

Example: 375 894 < 375 984

 a. 564 746 ___ 751 023
 b. 191 756 ___ 460 207
 c. 697 059 ___ 699 059
 d. 979 509 ___ 939 509
 e. 563 435 ___ 560 640
 f. 925 860 ___ 925 680

10. Fill in >, < or =:

Example: 300 000 + 5 < 300 500

 a. 75 001 + 9 ___ 75 100
 b. 3 838 ___ 3 888 – 50
 c. 2 800 – 800 ___ 2 008
 d. 50 000 + 3 ___ 50 300
 e. 5 556 ___ 5 655 – 100
 f. 200 000 + 50 ___ 200 050 + 50

Problem solving

Use each of the following digits only once to make the biggest eight-digit number possible, and then the smallest eight-digit number possible.
Prime numbers

Which numbers smaller than 100 can only be divided by one or by the number itself?

A prime number can be divided evenly only by 1 or itself. It has two, and only two, factors – 1 and itself. A prime number must be greater than 1.

1. Use drawings to show that the following numbers are not prime numbers but composite numbers.

Example: 8 can be divided by 1, 2, 4 and 8

\[\begin{array}{c}
\text{a. 9} \\
\text{b. 18} \\
\text{c. 155} \\
\text{d. 57} \\
\text{e. 39} \\
\text{f. 68}
\end{array} \]

\[\begin{array}{c}
\text{2 \times 4} \\
\text{1 \times 8}
\end{array} \]
2. Identify all the prime numbers from 1–100.

3. How would you write the following numbers as a product of prime numbers?

Example: 12

The number 12 can be made by multiplying using the prime numbers 2 and 3.

\[12 = 2 \times 2 \times 3 \]

(2 and 3 are prime numbers because \(2 = 2 \times 1\) and \(3 = 3 \times 1\))

a. 36

b. 60

c. 105
d. 420
e. 48

f. 1 800

4. What numbers are these? Why?

| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 |
|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 |
| 167 | 173 | 179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | 229 | 233 | 239 | 241 | 251 | 257 | 263 | 269 |
| 271 | 277 | 281 | 283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 | 353 | 359 | 367 | 373 | 379 | 383 |
| 389 | 397 | 401 | 409 | 419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 | 467 | 479 | 487 | 491 | 499 |
| 503 | 509 | 521 | 523 | 541 | 547 | 557 | 563 | 569 | 571 | 577 | 587 | 593 | 599 | 601 | 607 | 613 | 617 | 619 |
| 631 | 641 | 643 | 647 | 653 | 659 | 661 | 673 | 677 | 683 | 691 | 701 | 709 | 719 | 727 | 733 | 739 | 743 | 751 |
| 757 | 761 | 769 | 773 | 787 | 797 | 809 | 811 | 821 | 823 | 827 | 829 | 839 | 853 | 857 | 859 | 863 | 867 | 881 |
| 883 | 887 | 907 | 911 | 919 | 929 | 937 | 941 | 947 | 953 | 967 | 971 | 977 | 983 | 991 | 997 | 1003 | 1009 | 1013 |

Problem solving

How many three-digit prime numbers are there less than 1 000.
Your friend missed the lesson on rounding off. Use the number lines to explain how
to round off these pairs of numbers.

<table>
<thead>
<tr>
<th>Number Line</th>
<th>Round off</th>
</tr>
</thead>
<tbody>
<tr>
<td>To the nearest 10</td>
<td></td>
</tr>
<tr>
<td>4 528</td>
<td>4 530</td>
</tr>
<tr>
<td>6 891</td>
<td>6 880</td>
</tr>
<tr>
<td>2 189</td>
<td>2 190</td>
</tr>
<tr>
<td>643</td>
<td>640</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number Line</th>
<th>Round off</th>
</tr>
</thead>
<tbody>
<tr>
<td>To the nearest 100</td>
<td></td>
</tr>
<tr>
<td>4 520</td>
<td>4 530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number Line</th>
<th>Round off</th>
</tr>
</thead>
<tbody>
<tr>
<td>To the nearest 1 000</td>
<td></td>
</tr>
<tr>
<td>2 620</td>
<td>3 000</td>
</tr>
<tr>
<td>649</td>
<td>650</td>
</tr>
</tbody>
</table>

1. What symbol do we use for approximation? ________
2. Round off to the nearest 10.

Example: 789 ≈ 790

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 7</td>
<td>b. 4</td>
<td>c. 78</td>
</tr>
<tr>
<td>d. 61</td>
<td>e. 328</td>
<td>f. 451</td>
</tr>
</tbody>
</table>

3. Round off to the nearest 100.

Example: 789 ≈ 800

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 3</td>
<td>b. 54</td>
<td>c. 28</td>
</tr>
<tr>
<td>d. 765</td>
<td>e. 938</td>
<td>f. 1 764</td>
</tr>
</tbody>
</table>

4. Round off to the nearest 1 000.

Example: 789 ≈ 1 000

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 176</td>
<td>b. 324</td>
<td>c. 1 924</td>
</tr>
<tr>
<td>d. 8 639</td>
<td>e. 14 342</td>
<td>f. 67 285</td>
</tr>
</tbody>
</table>
5. Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>Round off to the nearest 10</th>
<th>Round off to the nearest 100</th>
<th>Round off to the nearest 1 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 7 632</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 8 471</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 9 848</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 5 737</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 9 090</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Round off to the nearest five.

Example: $4 \approx 5$

<table>
<thead>
<tr>
<th></th>
<th>Round off to the nearest 5</th>
<th>Round off to the nearest 10</th>
<th>Round off to the nearest 1 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 472</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 589</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 2 372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. 3 469</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>Round off to the nearest 10</th>
<th>Round off to the nearest 100</th>
<th>Round off to the nearest 1 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 781</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. 2 897</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Why do we round off? Give five examples from everyday life where we round off.

Example from every day life.

Problem solving

a. You have a five-digit number. After you round it off to the nearest thousand, you get a six-digit number. What number could your first number have been?
b. You have a four-digit number. After you round it off to the nearest five you get 3 895. What was your original number?
Calculating whole numbers

What are the four basic operations in maths?

+ - × ÷

One common method used to add or subtract large numbers is to list them in columns. Then, column by column, you add or subtract only those digits that have the same place value. Do you know other methods?

One common method used to multiply two large numbers together is to write the numbers vertically with the larger number being multiplied by the smaller number below, which is called the multiplier. Do you know other methods?

How would you divide large numbers?

1. Solve the sums. You can use the method of your choice.

Example 1:
278 467 + 197 539
= 200 000 + 100 000 + 70 000 + 90 000 + 8 000 + 7 000 + 400 + 500 + 60 + 30 + 7 + 9
= 300 000 + 160 000 + 15 000 + 900 + 90 + 16
= 300 000 + 100 000 + 60 000 + 10 000 + 5 000 + 900 + 90 + 10 + 6
= 400 000 + 70 000 + 5 000 + 900 + 100 + 6
= 400 000 + 70 000 + 5 000 + 1 000 + 6
= 400 000 + 70 000 + 6 000 + 6
= 476 006

Example 2:

\[\begin{array}{cccccc}
2 & 7 & 8 & 4 & 6 & 7 \\
+ & 1 & 9 & 7 & 5 & 3 & 9 \\
\hline
1 & 6 \\
9 & 0 \\
9 & 0 & 0 \\
1 & 5 & 0 & 0 & 0 \\
1 & 6 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 \\
\hline
4 & 7 & 6 & 0 & 0 & 6 \\
\end{array} \]

Example 3:

\[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 \\
2 & 7 & 8 & 4 & 6 & 7 \\
+ & 1 & 9 & 7 & 5 & 3 & 9 \\
\hline
4 & 7 & 6 & 0 & 0 & 6 \\
\end{array} \]

Example 3:

\[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 \\
2 & 7 & 8 & 4 & 6 & 7 \\
+ & 1 & 9 & 7 & 5 & 3 & 9 \\
\hline
4 & 7 & 6 & 0 & 0 & 6 \\
\end{array} \]

Example 3:

\[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 \\
2 & 7 & 8 & 4 & 6 & 7 \\
+ & 1 & 9 & 7 & 5 & 3 & 9 \\
\hline
4 & 7 & 6 & 0 & 0 & 6 \\
\end{array} \]

a. 87 382 + 12 213 =

b. 65 479 + 32 599 =
2. Calculate the sums. You can use a method of your own choice.

Example 1:

```
  4 7 6 0 0 6
- 1 9 7 5 3 9
  ________________
    1 8 9 7 7 7
```

Example 2:

```
  3 1 6 1 5 9 9 1
+ 9 8 1 9 7 8 4 6 7
  ________________
    9 0 6 6 9 7 9 6
```

a. 68 763 - 29 552 =

b. 83 254 - 25 368 =

c. 426 371 - 231 528 =

d. 532 764 - 299 999 =

continued
3. Solve the sums. You can use the method of your own choice.

Example 1:

\[543 \times 798 \]
\[= (500 \times 700) + (500 \times 90) + (500 \times 8) + (40 \times 700) + (40 \times 90) + (40 \times 8) + (3 \times 700) + (3 \times 90) + (3 \times 8) \]
\[= 350000 + 45000 + 4000 + 28000 + 3600 + 320 + 2100 + 270 + 24 = 300000 + 50000 + 40000 + \]
\[5000 + 4000 + 20000 + 8000 + 3000 + 2000 + 600 + 300 + 100 + 200 + 20 + 70 + 20 + 4 \]
\[= 300000 + 90000 + 9000 + 20000 + 13000 + 1200 + 110 + 4 \]
\[= 300000 + 110000 + 9000 + 10000 + 3000 + 1000 + 200 + 100 + 10 + 4 \]
\[= 300000 + 100000 + 10000 + 13000 + 300 + 10 + 4 \]
\[= 400000 + 30000 + 3000 + 300 + 10 + 4 \]
\[= 433314 \]

Example 2:

\[
\begin{array}{c}
5 & 4 & 3 \\
\times & 7 & 9 & 8 \\
\hline
2 & 4 & \\
2 & 7 & 0 & (3 \times 8) \\
2 & 1 & 0 & 0 & (3 \times 90) \\
3 & 2 & 0 & (40 \times 8) \\
3 & 6 & 0 & 0 & (40 \times 90) \\
2 & 8 & 0 & 0 & 0 & (40 \times 700) \\
4 & 0 & 0 & 0 & (500 \times 8) \\
4 & 5 & 0 & 0 & 0 & (500 \times 90) \\
3 & 5 & 0 & 0 & 0 & 0 & (500 \times 700) \\
\hline
4 & 3 & 3 & 3 & 1 & 4
\end{array}
\]

a. \[243 \times 89 = \]

b. \[579 \times 73 = \]
4. Solve the sums.

Example 1:

\[
\begin{array}{c}
26 \\
25 \div 650 \\
- 500 \\
150 \\
- 150 \\
0
\end{array}
\begin{array}{c}
25 \times 20 \\
25 \times 6 \\
\end{array}
\]

Example 2:

\[
\begin{array}{c}
26 \\
25 \div 654 \\
- 500 \\
154 \\
- 150 \\
4
\end{array}
\begin{array}{c}
25 \times 20 \\
25 \times 6 \\
\end{array}
\]

a. \(2 \div 254\)

b. \(12 \div 407\)

c. \(25 \div 890\)

Problem solving

1. We cycled 2 455 m on the first day and 3 650 m on the second day. How many kilometres did we travel?
2. I jogged 1 550 m and my friend jogged 2 275 m. How much further did my friend jog than I did?
3. The bakery bakes 2 450 biscuits on one day. How many did they bake in four weeks? Note that they only bake six days of the week.
4. My mother bought 3 850 m of string. She has to divide it into 25 pieces. How long is each piece?
Factors and multiples

Discuss this and give five more examples of each.

Multiple: A number that is the result of multiplying together two other numbers, e.g. \(3 \times 2 = 6\). Six is a multiple of 2 and 3. Examples of multiples of six are 6, 12, 18, 24.

Prime numbers have only two different factors. The one factor is 1. The other factor is the prime number itself. 2 is a prime number, e.g. \(1 \times 13 = 13\). There are only two factors: 1 and 13.

Factors: Factors are the numbers you multiply together to get another number, e.g. 3 and 4 are factors of 12, because \(3 \times 4 = 12\).

Composite numbers have three or more different factors, e.g. 21 is composite. \(1 \times 21 = 21, 3 \times 7 = 21\). So 21 has four factors: 1, 21, 3 and 7.

1. Write down the first six multiples of the following numbers, and circle the multiples shared by the two numbers.

 a. 2

 6

 b. 3

 9

 c. 4

 7

 d. 5

 8

 e. 4

 5

2. Look at the examples above. What is the lowest common multiple for each pair of numbers?

 a.
 b.
 c.
 d.
 e.

We use the abbreviation LCM for the lowest common multiple.
3. Write down the factors for the following, and circle the common factors for each pair of numbers.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 12</td>
<td></td>
</tr>
<tr>
<td>b. 28</td>
<td></td>
</tr>
<tr>
<td>c. 15</td>
<td></td>
</tr>
<tr>
<td>d. 24</td>
<td></td>
</tr>
<tr>
<td>e. 18</td>
<td></td>
</tr>
</tbody>
</table>

4. Look at your answers above. What is the highest common factor for each pair of numbers?

a.

b.

c.

d.

e.

5. Complete the following:

<table>
<thead>
<tr>
<th>Number</th>
<th>Factors</th>
<th>How many factors?</th>
<th>Prime or composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 12</td>
<td>1, 2, 3, 4, 6, 12</td>
<td>6</td>
<td>Composite</td>
</tr>
<tr>
<td>b. 41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. 121</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Express each of the following odd numbers as the sum of 3 prime numbers:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 29</td>
<td>3 + 7 + 19</td>
</tr>
<tr>
<td>b. 83</td>
<td></td>
</tr>
<tr>
<td>c. 55</td>
<td></td>
</tr>
<tr>
<td>d. 53</td>
<td></td>
</tr>
<tr>
<td>e. 99</td>
<td></td>
</tr>
</tbody>
</table>
Fractions are used every day by people who don’t even realise that they are using fractions. Name ten examples.

Read the definitions.

The **numerator** is the top number in a common fraction. It shows how many parts we have.

The **denominator** is the bottom number in a common fraction. It shows how many equal parts the item is divided into.

Equivalent fractions are fractions which have the same value, even though they may look different.

Why do we need to know what LCM is when we add fractions?

1. Complete the fractions to make them equal.
 a. \(\frac{2}{4} \times \frac{2}{2} = \frac{4}{8} \)
 b. \(\frac{3}{5} = \boxed{10} \)
 c. \(\frac{2}{6} = \boxed{12} \)
 d. \(\frac{6}{7} = \boxed{21} \)
 e. \(\frac{2}{4} = \boxed{2} \)
 f. \(\frac{9}{15} = \boxed{5} \)
 g. \(\frac{5}{6} = \boxed{18} \)
 h. \(\frac{7}{9} = \boxed{18} \)
 i. \(\frac{6}{22} = \boxed{11} \)
 j. \(\frac{20}{25} = \boxed{100} \)

2. What happens to the numerator and denominator? Extend the pattern by writing down three more equivalent fractions.
 a. \(\frac{1}{3} \times \frac{2}{2} = \frac{2}{6} = \frac{4}{12} = \frac{8}{24} \)
 b. \(\frac{1}{5} = \frac{3}{15} = \frac{9}{45} = \frac{27}{135} \)
3. Complete the pattern.
 a. \(\frac{5}{6} \times \frac{2}{2} = \frac{10}{12} \times \frac{2}{2} = \frac{20}{24} \times \frac{2}{2} = \frac{____}{____} = \frac{____}{____} = \frac{____}{____} \)
 b. \(\frac{3}{4} = \frac{9}{12} = \frac{27}{36} = \frac{____}{____} = \frac{____}{____} = \frac{____}{____} \)
 c. \(\frac{9}{11} = \frac{18}{22} = \frac{36}{44} = \frac{____}{____} = \frac{____}{____} = \frac{____}{____} \)
 d. \(\frac{1}{7} = \frac{5}{35} = \frac{25}{175} = \frac{____}{____} = \frac{____}{____} = \frac{____}{____} \)

4. Fill in the empty boxes.
 a. \(\frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{____}{4} \)
 b. \(\frac{2}{6} + \frac{1}{2} = \frac{____}{12} + \frac{6}{12} \)

5. Complete the fraction sums using the diagrams on the right.
 a. \(\frac{3}{4} = \frac{1}{8} + \frac{____}{____} = \)
 b. \(\frac{4}{6} = \frac{1}{3} + \frac{____}{____} = \)

6. Complete the sums.
 a. \(\frac{1}{2} = \frac{1}{8} + \frac{____}{____} = \frac{____}{____} \)
 b. \(\frac{1}{2} = \frac{1}{14} + \frac{____}{____} = \frac{____}{____} \)

7. Add and then subtract to test your answer.
 a. \(\frac{5}{7} \times \frac{2}{2} + \frac{2}{14} = \frac{____}{____} \)
 b. \(\frac{7}{9} + \frac{1}{27} = \frac{____}{____} \)

You can use a calculator.
8. Calculate the following:
 a. $\frac{1}{3} + \frac{3}{4}$
 b. $\frac{4}{5} + \frac{1}{6}$

 Multiples of 3:

 Multiples of 4:

 LCM: _______________________

 Multiples of 5:

 Multiples of 6:

 LCM: _______________________

9. Calculate the following:
 a. $2\frac{1}{4} + 5\frac{2}{4}$
 b. $7\frac{1}{8} - 3$

9. Calculate the following:
 a. $5\frac{1}{3} + 1\frac{2}{4}$
 b. $4\frac{3}{8} - 3\frac{4}{6}$
11. 1.2 million goods are sold per annum (each year).
 a. What is the total amount of goods sold per year?
 b. What is \(\frac{2}{12} \) of the total amount?
 c. What is \(\frac{6}{12} \) of the total amount?
 d. What is \(\frac{9}{12} \) of the total amount?
 e. What is \(\frac{11}{12} \) of the total amount?

12. What percentage of the circle is red?
 a.
 b.
 c.
 d.

Problem solving
I had \(\frac{1}{12} \) of the cake.
My friend had \(\frac{1}{4} \) of the cake.
How much cake did we have altogether?
Decimals

How are the following linked?
Give an example.

When in everyday life do we use:
- Common fractions?
- Decimal fractions?
- Percentages?

1. Complete the number lines below, using decimal fractions.

 a.

 i. What comes after 0 on the number line?

 ii. What comes before 1 on the number line?

 iii. What is half way between 0 and 1 on the number line?

 b.

 i. What comes after 0,2 on the number line?

 ii. What comes before 0,1 on the number line?

 iii. What is half way between 0,1 and 0,2 on the number line?
2. Complete the table below by adding to or subtracting from the number given in the first column.

<table>
<thead>
<tr>
<th>Number</th>
<th>Add 0,1</th>
<th>Add 0,01</th>
<th>Add 0,001</th>
<th>Subtract 0,1</th>
<th>Subtract 0,01</th>
<th>Subtract 0,001</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 0,657</td>
<td>0,757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 232,232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Fill in the missing number:

a. 32,4 + [] = 32,9

b. 8,452 + [] = 8,492

4. Write the following in expanded notation:

a. 15,342 = 10 + 5 + 0,3 + []

b. 456, 321 = []
5. Calculate the following using any method.

a. \(5.326 + 4.542 = \)

b. \(4.349 + 1.874 = \)

c. \(32.24 + 19.387 = \)

d. \(7.63 - 4.476 = \)

6. Complete the table:

<table>
<thead>
<tr>
<th>Decimal fraction</th>
<th>Common fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 5,879</td>
<td></td>
</tr>
<tr>
<td>b. 18,005</td>
<td></td>
</tr>
</tbody>
</table>
7. **Answer the following:**
 a. What is \(50\% \) of R1,00?

 b. What is \(0.5 \) of R1,00?

 c. What is \(\frac{1}{2} \) of R1,00?

 d. What is \(25\% \) of R1,00?

 e. What is \(0.25 \) of R1,00?

 f. What is \(\frac{1}{4} \) of R1,00?

8. **Look at the diagram and answer the following:**

 \[\begin{array}{cccccccccccc}
 0 & 20 & 40 & 60 & 80 & 100 & 120 & 140 & 160 & 180 & 200 \\
 10\% & 20\% & 30\% & 40\% & 50\% & 60\% & 70\% & 80\% & 90\% & 100\% \\
 \end{array} \]

 What is \(40\% \) of 200? ________

Problem solving

I bought trousers for R150 and then got 25\% discount. What did I pay for my trousers?
What will happen if I do these things? Give five examples of each.

1. Complete the following:
 a. \[4 - \square = 0 \]
 b. \[\square + 15 = 15 \]
 c. \[100 000 \times \square = 100 000 \]
 d. \[\square - 299 999 = 0 \]
 e. \[\square \times 1 = 84 934 \]

2. Replace each shape with a number.
 a. \[\bigcirc \bigcirc = 0 \]
 b. \[\square \times 1 = \square \]
 c. \[\bigcirc + 0 = \bigcirc \]
 d. \[\bigtriangleup - \pentagon = 0 \]
 e. \[\square \times 1 = \square \]
3. Complete the flow diagram.

<table>
<thead>
<tr>
<th>Input</th>
<th>Rule</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>98 342</td>
<td>Subtract the same number from the given number.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Add zero to the number.

<table>
<thead>
<tr>
<th>Input</th>
<th>Rule</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Add zero to the number.</td>
<td>99</td>
</tr>
<tr>
<td>387 342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,75</td>
<td></td>
<td>0,75</td>
</tr>
</tbody>
</table>

4. Create your own flow diagrams using these rules:

a. Add nine and multiply by two.

b. Divide by three and subtract one.
5. What is the value of X?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $X + 23 = 23 + 5$</td>
<td>$X = $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. $8 \times 2.5 = X \times 8$</td>
<td>$X = $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. $(90 + 10) \times 0.2 = 90 \times X + 10 \times X$</td>
<td>$X = $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. $999 999 + 0 = X + 999 999$</td>
<td>$X = $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. $2.5 + X = 4.5 + 2.5$</td>
<td>$X = $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. If $a = 2$, $b = 3$, and $c = 10$, complete and calculate the sums.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $a + b = $</td>
<td>$b + a = $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is $a + b = b + a$?</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. $a \times b = $</td>
<td>$b \times a = $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is $a \times b = b \times a$?</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. $(a \times b) \times c = $</td>
<td>$a \times (b \times c) = $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is $(a \times b) \times c = c \times b \times a$?</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. $(a + b) \times c = $</td>
<td>$a \times c + b \times c = $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is $(a + b) \times c = a \times c + b \times c$?</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. $c \times 1 = $</td>
<td>$1 \times c = $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is $c \times 1 = 1 \times c$?</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Follow the order of operation to calculate each of the following:

BODMAS stands for:

- **B** brackets
- **O** other (power and square roots)
- **D** division and **M** multiplication (left-to-right)
- **A** addition and **S** subtraction (left-to-right)

The order in which we carry out a calculation is important.
a. $7 - 3 + 6 = \underline{9}$

b. $16 + 29 - 87 = \underline{-42}$

c. $(96 \div 16) \times 2 = \underline{12}$

d. $35 \div 5 + (18 - 16) = \underline{7}$

e. $14 \div (36 - 29) + 11 = \underline{19}$

8. Use the properties of number to find the perimeter of each rectangle.

Problem solving

Sudoku fun
There are 9 rows and 9 columns in a Sudoku puzzle. Every row and column must contain the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9. There may not be any duplicate numbers in any row or column.

A region is a 3 x 3 box like the green one shown to the left. There are 9 regions in a traditional puzzle. Like the Sudoku rules for rows and columns, every region must also contain the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9. Duplicate numbers are not allowed in any region.
What is a 2–D shape? What is a 3–D object? Use the words below to guide you.

length, volume, area, height, width

What is a 1–D shape?

length

All 1–D shapes have only length. The only 1–D shape is a line, even a wavy one.

1. Complete the following table:

<table>
<thead>
<tr>
<th>2–D shape within the 3–D object</th>
<th>Name the 3–D object</th>
<th>Draw the net</th>
<th>Number of faces</th>
<th>Number of vertices</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 triangles</td>
<td>Triangular prism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Term 1
2. Name the polygons below. Tick all the quadrilaterals.

3. Name the quadrilateral and say whether the size of the angles equal 90º, is less than 90º or more than 90º.

a. b. c. d. e. f. g. h. i. j. k. l. m. n. o. p.

continued ☛
4. Make a tick in the correct answer column.

<table>
<thead>
<tr>
<th>This shape can have:</th>
<th>1 right angle</th>
<th>2 right angles</th>
<th>3 or more right angles</th>
<th>No right angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhombus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexagon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapezium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octagon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Answer the following questions:

You know the lengths of 3 sides of a parallelogram: 12.5 cm, 7.5 cm and 7.5 cm. Is that enough information to work out the length of the 4th side? If so, what is it? Make a drawing to support your answer.

6. You know the lengths of 4 sides of a pentagon: 2.5 cm, 4.2 cm, 3.5 cm and 6 cm. What will the 5th side be? Measure it. Make a drawing to support your answer.
7. Draw the following:

a. A rectangle with sides of 5.5 cm and 145 mm.

b. A square with sides of 6.1 cm.

c. An irregular pentagon with one side that is equal to 15 mm.

d. An irregular hexagon with all sides of different length.

Problem solving

Magazine or newspaper search

Find the following shapes in a magazine: quadrilateral, triangle and hexagon. Paste them here and describe their angles and sides.
Transformations

What does it mean when something transforms?

If a reflection is a transformation which has the same effect as a mirror, what effect will the following have?

- rotation
- translation
- enlargement

Think out of the box. Be creative!

A transformation is a change in form or shape according to certain rules. Common kinds of geometric transformations are reflections, rotations, translations and enlargements.

1. Answer the following questions:

 Purple rectangle:
 a. The length = ____________
 b. The width = ____________

 Green rectangle:
 c. The length = ____________
 d. The width = ____________
 e. The purple rectangle is enlarged ____________ times to make the green rectangle.

2. Complete the table. Make drawings if needed.

<table>
<thead>
<tr>
<th></th>
<th>Rectangle</th>
<th>Perimeter</th>
<th>Area</th>
<th>Enlarge by:</th>
<th>Perimeter</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Length: 4 cm Width: 2 cm</td>
<td></td>
<td></td>
<td>2 times</td>
<td>Length:</td>
<td>Width:</td>
</tr>
<tr>
<td>b.</td>
<td>Length: 3 cm Width: 2 cm</td>
<td></td>
<td></td>
<td>3 times</td>
<td>Length:</td>
<td>Width:</td>
</tr>
<tr>
<td>c.</td>
<td>Length: 5 cm Width: 4 cm</td>
<td></td>
<td></td>
<td>4 times</td>
<td>Length:</td>
<td>Width:</td>
</tr>
<tr>
<td>d.</td>
<td>Length: 6 cm Width: 3 cm</td>
<td></td>
<td></td>
<td>2 times</td>
<td>Length:</td>
<td>Width:</td>
</tr>
<tr>
<td>e.</td>
<td>Length: 7 cm Width: 6 cm</td>
<td></td>
<td></td>
<td>3 times</td>
<td>Length:</td>
<td>Width:</td>
</tr>
</tbody>
</table>
3. Slide the figure 4 right, 4 up

4. Plot the coordinates (9,9); (6,8); (6,5); (9,5) and connect the points in order. Then slide 3 down and 5 left and draw the figure at these new coordinates.
5. Reflect the figure.

6. Draw a triangle with coordinates: (4,8); (1,5); (4,2). Then draw its reflection across a reflection line with coordinates (5,9); (5,1). Write the coordinates of the new triangle.
7. Rotate the figure by a quarter of a revolution around the point (5,5).

8. Draw a half turn image of the figure: Triangle: (5,5); (1,5); (1,9). Write down the new coordinates.

9. When we reflect, rotate or translate a shape, does the size of the shape change?

10. Does the size of the shape change in enlargement and reduction?

Problem solving

Draw a transformation using reflection, rotation and translation on one graph showing the movement from one figure to the next.
1. Calculate the perimeter and area of the following polygons.

![Diagram of a rectangle](image)

<table>
<thead>
<tr>
<th></th>
<th>Perimeter</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>12 cm</td>
<td>6 cm²</td>
</tr>
<tr>
<td>b.</td>
<td>10 cm</td>
<td>8 cm²</td>
</tr>
</tbody>
</table>

2. Calculate the perimeter and area of the following rectangles.

<table>
<thead>
<tr>
<th></th>
<th>Perimeter</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>20 cm</td>
<td>16 cm²</td>
</tr>
<tr>
<td>b.</td>
<td>17 cm</td>
<td>14 cm²</td>
</tr>
</tbody>
</table>
3. If you have a rectangle with the following area, what could its length and breadth be? What is the perimeter?
Area = 210 m²

<table>
<thead>
<tr>
<th>Length</th>
<th>Breadth</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Sipho and his father are building a deck because the old one is too small. The old deck was 2.5 m × 3 m. They are going to double the dimensions of the deck. They’ll need to know how much railing and paint to buy. What will be the perimeter and area of the new deck? Show the calculations on a separate piece of paper.

5. If a rectangular prism has a volume of 36 cubic units, what might be the:

6. Complete the following table.

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Short way to calculate</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 cm</td>
<td>3 cm</td>
<td></td>
<td>Length × width × height</td>
<td></td>
</tr>
<tr>
<td>8 cm</td>
<td>2.5 cm</td>
<td></td>
<td>6 cm × 3 cm × 2 cm</td>
<td></td>
</tr>
</tbody>
</table>

7. If you have a rectangular prism with the following volume, what could the length, breadth and height be? Volume = 2 100 m³.

<table>
<thead>
<tr>
<th>Length</th>
<th>Breadth</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem solving

Investigate:
How many different ways can you draw a square and rectangles covering 64 square units? Show them.
- Do all of the above shapes have the same area?
- Do they all have the same perimeter?

Now try a similar activity with an object of 64 cubic units.
1. This is how long I took to complete my maths homework this week. Help me to complete this table.

<table>
<thead>
<tr>
<th>Maths homework</th>
<th>Hours</th>
<th>Minutes</th>
<th>Seconds</th>
<th>hh:mm:ss</th>
<th>I started my homework at:</th>
<th>I finished it at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>1</td>
<td>30</td>
<td>1</td>
<td>01:30:01</td>
<td>15:00</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td></td>
<td></td>
<td>01:15:25</td>
<td>15:30</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>1</td>
<td>27</td>
<td>17</td>
<td>01:15:09</td>
<td>14:50</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>0</td>
<td>55</td>
<td>45</td>
<td>17:45</td>
<td>16:30</td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td></td>
<td></td>
<td>01:15:09</td>
<td>14:50</td>
<td></td>
</tr>
</tbody>
</table>

2. I visited my grandmother over the weekend. On Saturday, I arrived at her house at 10:57:02. I left on Sunday at 13:45:05. How long was my visit to my grandmother?

3. Complete the table.

<table>
<thead>
<tr>
<th>Weeks</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>6.5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Hours</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>Minutes</td>
<td></td>
</tr>
</tbody>
</table>
4. Convert years to weeks and days.
 a. 5 years = to weeks ___ and days ___
 b. 25 1/2 years = to weeks ___ and days ___

5. Convert centuries to years.
 a. 10 centuries
 b. 5 1/4 centuries

6. Time zones:
 a. How many time zones are there in the world? ________________
 How do you know? ________________
 b. Name two other countries in the same time zone as South Africa.

 c. Name two other countries in a different time zone to South Africa.

Problem solving

It took Sam 3 hours to travel 100 km. How many kilometres per hour did he travel? How long will it take him to travel 120 km? Give your answer in hours and minutes. What do you think he was travelling on at this speed?
1. Write down each temperature.

 a.
 b.
 c.
 d.
 e.

f. Which temperature is the coldest?

g. Which temperature is the warmest?

h. A temperature of −5°C is colder than −3°C as it is 2°C less than

i. A temperature of −9°C is colder than −8°C as it is _______ less than _______.

2. What is the difference in temperature shown in question 1 between:

 a. a and b

 b. b and c

 c. d and e

 d. e and d

 e. e and a
3. Answer the following questions about length.

a. How many mm are there in a cm?

b. How many cm are there in a m?

c. How many mm are there in a m?

d. How many m are there in a km?

e. Convert the following in this table:

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
<th>cm</th>
<th>m</th>
<th>km</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>9 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td>3 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii.</td>
<td>2 km</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv.</td>
<td>10.5 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v.</td>
<td>3 600 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

f. A man travelled 450 km on the first day and 565 000 m on the second day. The third day he travelled double the distance he travelled on the first day. On the fourth day he reached his destination, which was 2 500 km from his starting point.

How far did he travel on the fourth day?
4. Answer the following questions about mass.

a. How many g are there in a kilogram?

b. How many kg are there in a tonne?

c. How many mg are there in a gram?

d. How many mg are there in a kilogram?

e. Convert the following:

<table>
<thead>
<tr>
<th></th>
<th>mg</th>
<th>g</th>
<th>kg</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>3 500 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td>2 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii.</td>
<td>2.5 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv.</td>
<td>3 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v.</td>
<td>5 000 000 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

f. An object weighs a quarter of a kilogram. I add one half of a kilogram to the object. I take 200 g off. I double the mass of the object. I add one tonne to the object and then half it. What is the mass of the object?
5. Answer the following questions on capacity.

a. How many ml are in a litre? ____________

b. How many ℓ are in a kl? ____________

c. How many ml are in a kl? ____________

d. Convert the following:

<table>
<thead>
<tr>
<th></th>
<th>ml</th>
<th>ℓ</th>
<th>kl</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>5 250 ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td>4,5 ℓ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii.</td>
<td>3 kl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv.</td>
<td>9 999 ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v.</td>
<td>1,75 ℓ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e. A swimming pool has the following dimensions: length 25 metres, width 10 metres and depth 1,5 metres. The capacity is $25 \text{ m} \times 10 \text{ m} \times 1,5 \text{ m} = 375$ cubic metres. One cubic metre is equal to 1 000 litres. Therefore the capacity of the swimming pool is ____________.

How many kilolitres is this? ____________

Problem solving

Give five examples of how these words are used in your house.

- temperature
- mass/weight
- capacity
- length

What is the difference between capacity and volume?
Look at the following pictures and ask yourself, “What is the probability that this will happen today?”

1. Draw and make these two nets on cardboard, cut, fold, and stick them to make two dice.

2. Roll these two dice a 100 times and write down each time the same two letters occur. Use tallies to record your answers in the table below.

<table>
<thead>
<tr>
<th>Letters on the dice</th>
<th>Times landed on the combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>a a</td>
<td></td>
</tr>
<tr>
<td>b b</td>
<td></td>
</tr>
<tr>
<td>c c</td>
<td></td>
</tr>
<tr>
<td>d d</td>
<td></td>
</tr>
<tr>
<td>e e</td>
<td></td>
</tr>
<tr>
<td>f f</td>
<td></td>
</tr>
</tbody>
</table>

3. Compare your answers with those of a friend. Are they the same? Why?
4. **You need to prepare.**
 You need an empty bag.

You need to make a set of 10 cards using cardboard or paper. Each card should be a square 4 cm by 4 cm. Cut the ten cards and place them in the bag.

5. **Draw a card from the bag and record it below. Place the card back into the bag. Do this 100 times.**

<table>
<thead>
<tr>
<th>Letter on the card</th>
<th>Times landed on the letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

6. **Compare your answers with those of your friend. Are they the same? Why?**

7. **Drawing a number X card from the bag has a probability of 1 out of 10. We can write it as \(\frac{1}{10} \).**

 What is the probability of drawing card y? [] card z? [] card m? []
 card a? [] card b? [] and card k? []

Problem solving

Card fun: Do a similar activity but use the following quadrilateral cards. What is the probability of drawing a card with a square?
1. Answer the question about the pictograph.

Cars sold in 2013

<table>
<thead>
<tr>
<th>1st quarter</th>
<th>2nd quarter</th>
<th>3rd quarter</th>
<th>4th quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan – March</td>
<td>April – June</td>
<td>July – September</td>
<td>October – December</td>
</tr>
</tbody>
</table>

![Pictograph Image]

Key

- ![Image] = 100 000 cars
- ![Image] = 50 000 cars

a. Complete the table. How many cars were sold in each quarter?

<table>
<thead>
<tr>
<th>Quarter</th>
<th>1st quarter</th>
<th>2nd quarter</th>
<th>3rd quarter</th>
<th>4th quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan – March</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>April – June</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>July – September</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>October – December</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

b. Why do you think more cars were sold during the 4th quarter?

__

c. Look at the data-handling cycle. What steps of the data handling cycle had to happen before the pictograph could be drawn? What steps still need to happen to complete the data handling cycle?

__

__
2. Sort the data using the frequency table below.

I collected data from children about their favourite colour. I recorded their answers by making tally marks on a piece of paper.

3. Complete this frequency table below using the data above.

<table>
<thead>
<tr>
<th>Colour</th>
<th>Tally</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

4. Use the information from the frequency table to draw and label this pie chart.

Title: ______________________

Problem solving

Collect data about cell phone usage in your class and draw a bar chart of your results. Explain what you need to do.
Commutative property of addition and multiplication

Are the following true or false?

- \(3 + 4 = 4 + 3\)
- \(3 \times 4 = 4 \times 3\)
- \(20 + 5 = 5 + 20\)
- \(20 \times 5 = 5 \times 20\)

What do you notice?

1. Use the commutative property of addition or multiplication to make the equations true.

Example: \(5 + 1 = 1 + 5\) (addition) and \(5 \times 1 = 1 \times 5\) (multiplication)

<table>
<thead>
<tr>
<th>a. (13 + 2 =)</th>
<th>b. (62 + 31 =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(13 + 2 = 2 + 13)</td>
<td>()</td>
</tr>
<tr>
<td>(4 \times 5 =)</td>
<td>d. (7 \times 9 =)</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>e. (= 8 \times 9)</td>
<td>f. (= 15 \times 12)</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

g. Make your own equations using the commutative property of addition and multiplication.

2. Use the commutative property of addition or multiplication to make the equations true.

Example: \(f + e = e + f\) (addition) and \(f \times e = e \times f\) (multiplication)

<table>
<thead>
<tr>
<th>a. (a + b =)</th>
<th>b. (c \times d =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>c. (m \times n =)</td>
<td>d. ()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>e. (= p \times 2)</td>
<td>f. (s \times t =)</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

g. Make your own equations using the commutative property of addition and multiplication.
3. Show that the given equation are equal when you substitute $a = 2, b = 5$ and $c = 3$.

Example: $a + b = b + a$ (addition)

\[
\begin{align*}
 a + b &= 2 + 5 \\
 &= 7 \\
 &= b + a
\end{align*}
\]

$a + b = b + a$

$a \times b = b \times a$ (multiplication)

\[
\begin{align*}
 a \times b &= 2 \times 5 \\
 &= 10 \\
 &= b \times a
\end{align*}
\]

$a \times b = b \times a$

a. $c + a = c + a$

b. $c \times a = c \times a$

c. $b \times a = a \times b$

d. $b + a = a + b$

e. $b \times c = c \times b$

f. $b + c = c + b$

4. Write an equation to show how each diagram illustrates the commutative property of multiplication.

a.

b.

c.

d.

Problem solving

If $a = 20$ and $b = 15$, write an **associative property of addition and multiplication** statement and solve it.
Are the following true or false?
5 + (3 + 2) = (5 + 3) + 2
9 × (2 × 3) = (2 × 3) × 9
(12 + 14) + 13 = 12 + (14 + 13)
(11 × 2) × 4 = 11 × (2 × 4)
What do you notice?
The associative property of addition and multiplication says that it doesn’t matter how you group numbers when you add or multiply.

1. Use the associative property of addition or multiplication to make the statements true.

Example:
(5 + 1) + 3 = 5 + (1 + 3) (addition)
(5 × 1) × 3 = 5 × (1 × 3) (multiplication)

<table>
<thead>
<tr>
<th>Term 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (6 + 2) + 4 = 6 + (2 + 4)</td>
</tr>
<tr>
<td>c. 8 × (10 × 4) =</td>
</tr>
<tr>
<td>e. (11 × 3) × 2 =</td>
</tr>
</tbody>
</table>

2. Use the associative property of addition or multiplication to make the statements true.

Example:
f + (g + h) = (f + g) + h (addition)
f × (g × h) = (f × g) × h (multiplication)

a. (a + b) + c =	b. (m + n) + c =	c. (g × h) × i =
d. (c × d) × f =	e. (k × z) × d =	f. (a + d) + v =
g. (a × c) × d =	h. (k × l) × m =	i. (v + c) + r =
3. Solve if $a = 2$, $b = 4$ and $c = 3$. Show that the associative properties hold and calculate the answers.

Examples:

- $a + (b + c) = (a + b) + c$
- $2 + (4 + 3) = (2 + 4) + 3$
- $2 + 7 = 6 + 3$
- $a + (b + c) = (a + b) + c$
- $a \times (b \times c) = (a \times b) \times c$
- $2 \times (4 \times 3) = (2 \times 4) \times 3$
- $2 \times 12 = 8 \times 3$
- $24 = 24$
- $a \times (b \times c) = (a \times b) \times c$

a. $(c + a) + b = c + (a + b)$
b. $(b \times a) \times c = a \times (b \times c)$
c. $b \times (c \times a) = c \times (b \times a)$
d. $b + (c + a) = (b + c) + a$

4. If $m = 1$, $n = 7$ and $q = 2$, show that the expressions are equal.

- $(q + m) + n = q + (m + n)$
- $(n \times m) \times q = m \times (n \times q)$
- $n \times (q \times m) = q \times (n \times m)$
- $n + (q + m) = (n + q) + m$

Problem solving

If $a = 25$, $b = 30$ and $c = 10$, write an **associative property of addition and multiplication** statement and solve it.
The distributive property lets you multiply a single number and each of two or more numbers between brackets (the products of which you then add together).

You will get the same answer when you multiply a group of numbers added together as when you do each multiplication separately and then add them together.

\[
2(3 + 2) = 2 \times 5 = 10 \\
2(3 + 2) = (2 \times 3) + (2 \times 2) = 6 + 4 = 10
\]

Usually we follow the rule that anything in brackets must be done first. In this example it would have been very easy to do this, \(2(3+2) = 2(5) = 10\). But the distributive property becomes very useful when what is inside the brackets is more complicated.

1. Use the distributive property to write a sum for each diagram so that you can calculate the total number of blocks in each drawing.

Example:

\[2(3 + 5) = 2 \times 3 + 2 \times 5 = 6 + 10 = 16\]

a.

b.

c.

d. Draw a diagram for:

i. \(5(2 + 3)\)

ii. \(6(1 + 4)\)
2. Use the distributive property of multiplication to make these statements true.

Example: $4(5 + 9) = 4 \times 5 + 4 \times 9 = (4 \times 5) + (4 \times 9)$

a. $3(4 + 2) =$

b. $10(2 + 3) =$

c. $5(3 + 1) =$

Calculate it:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12 + 6 = 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

3. Use the distributive property of multiplication to make these statements true.

Example: $4 \times 5 + 4 \times 3 = (4 \times 5) + (4 \times 3) = 4(5 + 3)$

a. $3 \times 2 + 3 \times 5 =$

b. $6 \times 1 + 6 \times 4 =$

c. $3 \times 2 - 3 \times 1 =$

Calculate it:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6 + 15 = 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

4. If $a = 3$, $b = 2$ and $c = 4$, calculate the following:

Example: $a(b + c) = a \times b + a \times c$

1. $3(2 + 4) = 3 \times 2 + 3 \times 4$

$3(6) = 6 + 12$

18 = 18

a. $b(a + c)$

b. $c(b + a)$

c. $a(c + b)$

Problem solving

If $a = 5$, $b = 9$ and $c = 11$, write a distributive property statement and calculate the answer.
Zero as the identity of addition, one as the identity of multiplication, and other properties of numbers

What do you notice?

3 + 0 =	5 + 0 =	100 + 0 =
0 + 16 =	0 + 250 =	72 + 0 =
3 × 1 =	5 × 1 =	100 × 1 =
1 × 16 =	1 × 250 =	1 × 72 =

Zero as the identity of addition:
The sum of zero and any number is the number itself. The answer will always be the number that **zero** is added to.

One as the identity of multiplication:
The product of 1 and any number is always the number itself. The answer will always be the number that **one** is multiplied by.

1. Use zero as the identity of addition, or one as the identity of multiplication to write a sum for the following:

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Zero as the identity of addition</th>
<th>One as the identity of multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 5</td>
<td>5 + 0 = 5</td>
<td>5 × 1 = 5</td>
</tr>
<tr>
<td>b. 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. 0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Use zero as the identity of addition, or one as the identity of multiplication to solve the following:

a. \(b + 0 = \)

\[b \times 1 = \]

b. \(d \times \square = d \)

\[d + \square = d \]

\[e + 0 = \]

3. Choose the correct property of number to write and equivalent statement to complete the equation.

a. \(4 + 5 = \)

\[4 + 5 = 5 + 4 \]

b. \(2(3 + 9) = \)

\[2(3 + 9) = \]

c. \(3 + (4 + 8) = \)

\[3 + (4 + 8) = \]

d. \(5(9 - 8) = \)

\[5(9 - 8) = \]

e. \(9 + 12 = \)

\[9 + 12 = \]

f. \((2 \times 5) \times 11 = \)

\[(2 \times 5) \times 11 = \]
4. Say whether the following are true or false. If it is false, explain why it is false.

 a. $9 + 2 = 2 + 9$
 b. $5 - 4 = 4 - 5$
 c. $4(2 + 1) = 4 \times 2 + 4 \times 1$
 d. $3 + 0 = 3$
 e. $8 - (3 - 2) = (8 - 3) - 2$
 f. $2(5 - 4) = 2 \times 5 - 2 \times 4$

5. If $a = 2$, $b = 5$, $c = 8$, solve the following:

 Example: $b + a = a + b$
 $5 + 2 = 2 + 5$
 $7 = 7$

 a. $a + c = c + a$
 b. $(b + a) = (b + c) + a$
 c. $a + 0 =$
 d. $b(a + c)$
 e. $a(c - b)$
 f. $b \times 1 =$

6. Match column A with column B

 Column A Column B
 Associative property of numbers $a \times 1 = a$
 Commutative property of numbers $(a + b) + c = a + (b + c)$
 Distributive property of numbers $a + 0 = a$
 Zero as the identity of addition $a + b = b + a$
 One as the identity of multiplication $a(b + c) = a \times b + a \times c$

Problem solving

- What should I add to a number so that the answer will be the same as the number?
- By what should I multiply a number so that the answer will be the same as the number?
- Write five statements that are true using the properties of number.
- Write five statements that are false using the properties of number. Explain your answer.
How fast can you give me the first 12 multiples of 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, and 10s?

How did the number board help you?

1. Use the number board to complete the following:

 Example: The multiples of 6 are 6, 12, 18, ... 72, or
 We can write it as: multiples of 6: \(\{6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72\}\)

 a. Multiples of 4: \{___\}

 b. Multiples of 7: \{___\}

 c. Multiples of 5: \{___\}

 d. Multiples of 8: \{___\}

 e. Multiples of 2: \{___\}

 f. Multiples of 9: \{___\}

2. Write down the first 12 multiples of the numbers below. Circle all the common multiples and identify the lowest common multiple (LCM).

 Example: Multiples of 2: \(\{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24\}\)
 Multiples of 4: \(\{4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48\}\)
 The LCM is 4.
a. Multiples of 5: {________}
 Multiples of 10: {________}
 LCM? ________

b. Multiples of 5: {________}
 Multiples of 6: {________}
 LCM? ________

c. Multiples of 90: {________}
 Multiples of 20: {________}
 LCM? ________

3. What is the LCM for the following?

 Example:
 Multiples of 4 and multiples of 7
 Multiples of 4: { 4, 8, 12, 16, 20, 24, 28 }
 Multiples of 7: { 7, 14, 21, 28 }

 a. Multiples of 2 and multiples of 8

 b. Multiples of 3 and multiples of 6

 c. Multiples of 5 and multiples of 3

 d. Multiples of 4 and multiples of 8

 e. Multiples of 70 and multiples of 60

 f. Multiples of 100 and multiples of 125

Problem solving

In our homes there are various things that come in multiples. Give five examples of multiples from your home.
Term 1

Divisibility and factors

Your little brother messed up your notes. Find the missing information.

A number is divisible by 2 if the number formed by the last three digits is divisible by 8.
A number is divisible by 3 if the sum of the digits is divisible by 3.
A number is divisible by 10 if the last digit is 0.
A number is divisible by 4 if the last two digits are divisible by 4.
A number is divisible by 9 if the sum of the digits is divisible by 9.
A number is divisible by 5 if the last digit is 0 or 5.
A number is divisible by 6 if it is divisible by 2 and it is divisible by 3.

1. Tick whether the numbers are divisible by 2, 3, 4, 5 or 10. You can have more than one answer.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 376</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 7232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 9050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 6312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 2355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. The following numbers are divisible by?

Example: 6 is divisible by 1, 2, 3 and 6.

| a. 12 | b. 36 | c. 42 | d. 24 | e. 64 |

3. Which two numbers, when multiplied, give you this number?

Example: 6 = 2 × 3, 6 = 1 × 6

| a. 12 | b. 36 | c. 42 | d. 24 | e. 64 |

4. What do you notice if you compare the answers to questions 2 and 3?
5. For each of the numbers given below, write down:
 (i) All the possible multiplication sums using only two numbers that will give you this number. (ii) All the numbers used in these multiplication sums, in ascending order (but do not repeat a number). (iii) Complete the sentence: “These are the factors of ______.” (iv) Complete the sentence: “Factors of ______ = {_______}.”

 Example:
 - i. 12: 1 × 12, 2 × 6, 3 × 4
 - ii. 1, 2, 3, 4, 6, 12
 - iii. These are the factors of 12.
 - iv. Factors of 12 = {1, 2, 3, 4, 6, 12}

<table>
<thead>
<tr>
<th></th>
<th>a.</th>
<th>b.</th>
<th>c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>18:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv. Factors of 18 = {_______}</td>
<td>iv. F18 = {_______}</td>
<td>iv. F36 = {_______}</td>
<td></td>
</tr>
</tbody>
</table>

6. Complete the following, using the example to guide you.

 Example:
 - i. Factors of 12 are 1, 2, 3, 4, 6 and 12.
 - ii. The common factors are: 1, 2, 3, 6.
 - iii. The highest common factor is 6.

<table>
<thead>
<tr>
<th></th>
<th>a.</th>
<th>b.</th>
<th>c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors of 8: {_______}</td>
<td>Factors of 16: {_______}</td>
<td>Factors of 12: {_______}</td>
<td></td>
</tr>
<tr>
<td>Factors of 3: {_______}</td>
<td>Factors of 3: {_______}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factors of 9: {_______}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>Words</th>
<th>Factors</th>
<th>Common factors</th>
<th>HFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 4 and 8</td>
<td>Factors of 4 and Factors of 8</td>
<td>1, 2, 4, 1, 2, 4, 8</td>
<td>1, 2, 4</td>
<td>4</td>
</tr>
<tr>
<td>b. 9 and 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 4 and 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 12 and 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find out!

When in everyday life do we use HCF?
Remember that a ratio is a comparison between two numbers. Discuss the following:

There is 1 boy and 3 girls in the room. You could write the ratio as: 1:3

| \(\frac{1}{2} \) are boys | 0,25 are boys | 25% are boys |
| \(\frac{3}{4} \) are girls | 0,75 are girls | 75% are girls |

1. Write the following ratios as fractions. Use boys:girls for all your ratios.

 Example: 2 boys:3 girls is the same as \(\frac{2}{3} \) are boys and \(\frac{3}{5} \) are girls

 a. 3:4 b. 5:7 c. 6:8
 d. 3:9 e. 1:2 f. 7:9

2. Write the following ratios as percentages.

 Example: 3:7 is the same as \(\frac{3}{7} \) and \(\frac{7}{10} \)
 = 0,3 and 0,7
 = 30% and 70%

 a. 4:6 b. 2:8 c. 5:5

Now try these. You need to think carefully to write each one as a percentage.

d. 12:13 e. 20:30 f. 1:3
3. Solve the problems.
 a. There were 6 cyclists with red mountain bikes and 4 with green mountain bikes at the race. What was the ratio of red to green mountain bikes? Write your answer as a common fraction, a decimal fraction and a percentage.

 b. If the length of the side of a square is doubled, what is the ratio of the area of the original square to the area of the new square? Also write your answers as a common fraction, a decimal fraction and a percentage.

 Problem solving

 There are 600 pupils in a school. The ratio of boys to girls in this school is 9:11. How many girls and how many boys are in this school?
Look at the ratio and rate examples. Give another 5 real-life examples.

Ratio and rate is used for solving many everyday problems that involve comparing different numbers.

A ratio compares the size, or magnitude, of two numbers of the same kind.

A ratio that compares quantities of different types (of measurement units) that are related to each other is called a rate.

4:5
4 boys to 5 girls

R25 per kg

1. Find the unit rate (the unit rate describes how many units of the first type of quantity correspond to one unit of the second type of quantity).

Example: 50 hamburgers in 10 days = 5 hamburgers per day.

a. 24 orders in 3 days = ______ orders per day.

b. 36 cupcakes in 3 boxes = ______ cupcakes per box.

c. 12 newspapers in 2 piles = ______ newspapers per pile.

d. 16 slices from 2 cakes = ______ slices per cake.

e. 120 pages in 3 days = ______ pages per day.

2. Find the unit rate for each.

Example: \(\frac{600 \text{ kilometres}}{60 \text{ litres}} = \frac{10 \text{ kilometres}}{1 \text{ litre}} = 10 \text{ kilometres/litre} \)

a. \(\frac{R150}{75 \text{ kilogram}} = \) ______

b. \(\frac{80 \text{ metre}}{8 \text{ seconds}} = \) ______

c. \(\frac{R200}{8 \text{ litres}} = \) ______

d. \(\frac{10 \text{ kilometre}}{20 \text{ minutes}} = \) ______
3. Solve the following. Show all calculations.

| a. Autumn started and over a period of 4 hours, 120 leaves fell from a tree. At this rate, how many leaves fell in one hour? |
| b. Peter drove a total of 1 000 km and used 100 litres of petrol. What is this rate in kilometres per litre? |
| c. Zaheeda scored 9 goals in 5 netball matches. At this rate, about how many goals did she score in each game? |
| d. Climbing up a mountain, Richard ascended 120 metres every hour. At this rate, how many metres will he ascend in 4 hours? |

4. We use rate on a daily basis. Give five examples and then write each one as a unit rate.

<table>
<thead>
<tr>
<th>Rate daily example</th>
<th>Unit rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. We travelled 5 km to school, and it took us 10 minutes.</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
</tr>
</tbody>
</table>

Problem solving

A water tank that holds 100 litres is leaking at a rate of 2 litres/min. How long will it take to waste 24 litres at this rate?
The rand, sign: R; code: ZAR, is the currency of South Africa. It takes its name from the Witwatersrand the ridge upon which Johannesburg is built and where most of South Africa's gold deposits were found. The rand has the symbol "R" and is equal to 100 cents, symbol "c".

The Earning and Spending Game!!

How to play:
- Put each player’s token on the Start square.
- Take it in turns to throw a dice to see how many squares you can move to the right.
- When you move up to the next row, move to the left (as you can see from the numbered squares).
- When you land on a money note you collect that value of note.
- When you land on a trolley sell you move up one row and also earn R100.
- When you land on a trolley buy you move one row down and pay R100. (If you do not have R100 you move one row down and lose the next turn.)
- The person who ends with the most money wins.

You sell some goods.
Move one row up and earn R100.

You buy some goods.
Move one row down and pay R100.
1. If these were the results of the numbers your dice landed on, how much money do you have at the end of these throws. After each result use a number sentence or word sum to describe what happened.

<table>
<thead>
<tr>
<th>Number on dice</th>
<th>Number sentence or word sum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Earns R20</td>
</tr>
<tr>
<td>6</td>
<td>R20 + R100 = R120</td>
</tr>
<tr>
<td>3</td>
<td>R120 +</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Problem solving

Make your own dice and use two stones as tokens. Play this game with a family member.
Do you know the meaning of profit, loss and discount?

Definition
- **Profit** is the surplus remaining after total costs are deducted from total revenue.
- **Loss** is the excess of expenditure over income.
- **Discount** is the amount deducted from the asking price before payment.

Remember profit and loss do not only apply to businesses, but also to your personal income.

1. Are you making a profit or a loss in these examples? How much profit or loss?
 (Circle the correct answer and calculate the amount.)

 a. You are buying sweets for 45c each and selling them for 65c each.
 I made a profit / loss of _________ (amount) per sweet.

 b. You are buying pencils for R2,00 each and selling them for R2,40 each to your friends. You manage to sell 40 pencils. I made a profit / loss of _________ (amount).

 c. On Saturdays you hire a stall at the local flea-market for R50. You are buying juice for R1,50 each and selling them for R2,50 each. Last Saturday it was cold and you only managed to sell 40. I made a profit / loss of _________ (amount).

 d. You are buying sweets in large packets of 100 for R10,45 per packet. You are selling to your friends for 30c per sweet. During the first break you manage to sell 75 sweets. I made a profit/loss of _________ (amount).

 e. You are buying fruit directly from the market and selling it to your neighbours, friends and family. Last weekend you bought 3 boxes of bananas. Each box contained 12 bunches of 12 bananas each. Each box cost you R75. You managed to sell 80% of the bananas at 65c each before the rest were too ripe to sell and you had to throw them away. I made a profit/loss of _________ (amount).
Profit can be calculated in different ways. Normally when we talk about 10 % profit we calculate it on the cost price. We sometimes also refer to a 10 % mark-up. The formula for the percentage profit is:

\[
\text{Profit} = \left(\frac{\text{Selling Price} - \text{Cost Price}}{\text{Cost Price}} \right) \times 100
\]

For example, if I sold a football which cost me R200 for R220 I make a 10% profit.

\[
\frac{R20}{R200} \times 100 = 10\%
\]

2. How much must I sell it for?

a. You are buying sweets for 45c each and you want to make a 25 % profit. How much must you sell them for?___________ (amount).

b. You are buying pens for R1,27 each and you want to make a 17 % profit. How much must you sell them for?___________ (amount).

c. On Saturdays you hire a stall at the local flea–market for R50. You buy juice for R1,50 per box and you normally sell 200 units per Saturday. If you want to make a 35 % profit after paying for the stall, how much must you ask per fruit juice?___________ (amount).

3. Will I still make a profit if I sell it with discount?

(Circle the correct answer and calculate the amount)

a. You are buying sweets in large packets of 100 for R12,45 per packet. You are selling to your friends for 20c per sweet. If they buy 10 sweets or more at a time you give them a 25 % discount. During the first break you sold 35 loose sweets and 25 sweets at discounted price. What will your profit be?___________ (amount).

b. You are buying fruit directly from the market and sell it to your neighbours, friends and family. Last weekend you bought 3 boxes of bananas. Each box contained 12 bunches of 12 bananas each. Each box cost you R75. You managed to sell 80 % of the bananas at 65c each. The rest of the bananas got too ripe and you sold them at a discount of 80 %. I made a profit / loss of ___________ (amount).

Problem solving

If you bought your bicycle for R1 300 and you are selling it for R1 500, what percentage discount, on selling price, can you give your friend who wants to buy your bicycle and still make R50 profit?
Do you know what a budget is?
Can I have my own budget or is it only for adults?

Budget is the estimate of cost and revenues over a specified period.

Creating a budget is the most important step in controlling your money. The first rule of budgeting: **spend less than you earn!**

Example: If you received R50 allowance (pocket money) per month and another R30 for your birthday, you cannot spend more than R80 for the entire month.

Structuring your budget

1. **Determine your income**
 Make a list of all your possible income and estimate the amount you will earn during the next month.

<table>
<thead>
<tr>
<th>Income</th>
<th>Estimated amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated total income</td>
<td></td>
</tr>
</tbody>
</table>

2. **Estimate your expenses**
 Make a list of all your possible expenses and estimate the amount you will spend during the next month.

<table>
<thead>
<tr>
<th>Expenses</th>
<th>Estimated amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated total expenses</td>
<td></td>
</tr>
</tbody>
</table>
Net income is, like profit, the surplus remaining after all costs are deducted from total (or *gross*) revenue. If the expenses exceed the income we call it a *shortage.*

3. **Am I making a surplus?**
 Deduct your total expenses from your total income to determine if you are going to make a surplus or shortage.

<table>
<thead>
<tr>
<th>Estimated amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total income</td>
</tr>
<tr>
<td>Total Expenses</td>
</tr>
<tr>
<td>Net Income</td>
</tr>
</tbody>
</table>

4. **What can I do with my surplus?**
 Make a list of what you can do with your surplus.

 ![Image of a hot water bottle]
 - It is always a bright idea to save for a rainy day!

5. **Savings**
 If I manage to save R80 every month, how long must I save to buy myself a new computer game at R499.95?

 6. **Track your budget**
 Using the table below, draw up a budget in your writing book. Complete your budget and track your actual expenses for the next month.

<table>
<thead>
<tr>
<th>Income</th>
<th>Actual amount</th>
<th>Estimated amount</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated total income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expenses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated total expenses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Income</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem solving

Describe in your own words what you think of this saying: “A budget tells us what we can’t afford, but it doesn’t keep us from buying it.”
What is a loan? What is interest?

A **loan** is a sum of money that an individual or a company lends to an individual or company with the objective of gaining profits from interest when the money is paid back.

Interest is the fee charged by a lender to a borrower for the use of borrowed money, usually expressed as an annual percentage of the amount borrowed, also called interest rate.

When someone lends money to someone else, the borrower usually pays a fee to the lender. This fee is called ‘interest’. There are two kinds of interest: **simple** and **compound**. ‘Simple’ or ‘flat rate’ interest is usually paid each year as a fixed percentage of the amount borrowed or lent at the start. With ‘compound’ interest you also pay interest on the interest!

The **simple interest** formula is as follows:

\[
\text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time}
\]

where:

- **‘Interest’** is the total amount of interest paid,
- **‘Principal’** is the amount lent or borrowed,
- **‘Rate’** is the percentage of the principal charged as interest each year.
- **‘Time’** is the time in years to pay back the loan.

1. **Calculating the interest amount**

 I want to buy a new bicycle to deliver newspapers. I do not have enough money but a friend offers to lend me the money. I agree to repay the money after 1 year with interest of 10 % per year. I borrow R1 500.

 a. How much interest must I pay?

 b. What will be the total amount that I need to repay to my friend?

 c. If I decide to repay him weekly, what will my weekly instalment be?

 d. If the interest rate was 12 % instead of 10 %, how much more would I have to pay for my bicycle?
2. Calculating the interest rate
 I borrow R3 000 from the bank to buy a wheelchair for my sick brother. The contract stipulates that I have to repay the bank R3 900 after 2 years.
 a. How much interest must I pay the bank per year?

 b. What is the interest rate I have to pay?

 c. If I decide to repay the bank weekly, what will my weekly instalment be?

 d. If I repay the loan after one year the bank will only charge me R3 360. What will the interest rate be if I repay them after one year?

3. Calculating the repayment period
 a. If the formula for calculating interest is: Interest = Principal × Rate × Time, what will the formula be for calculating the loan period?

 b. I borrowed R5 000 from the bank and they charge me 10% simple interest per year. The total amount I have to repay is R6 750. How long will it take me to repay the loan?

 c. The interest rate changes to 12% and the total repayment amount to R8 360. What will the repayment period for the R5 000 loan be?

 d. The total interest I will have to pay on a loan of R 7 500 is R7 200 and the interest rate I am paying is 12%. How many years will it take me to repay the loan?

Problem solving
 I am repaying R452 per month on my loan. The interest rate the bank charged me was 15% simple interest. I have to repay my loan over 48 months. I calculated that the total amount of interest I am paying over the 48 months is: R8 136. What was the original amount I borrowed at the bank?
Let us review these financial terms.

Profit is the surplus remaining after total costs are deducted from total revenue.

Loss is the excess of expenditure over income.

Discount is the amount deducted from the asking price before payment.

Budget is the estimate of costs and revenues over a specified period.

A **loan** is a sum of money that an individual or a company lends to another individual or company with the objective of gaining profits when the money is paid back.

Interest is the fee charged by a lender to a borrower for the use of borrowed money, usually expressed as an annual percentage of the amount borrowed, also called interest rate.

1. **You are starting your own lemonade stall.**

You can get lemons from the neighbour at 10c per lemon and sugar at the local shop at R10 per packet. The paper cups will cost you 10c each and your brother is willing to sell the lemonade for 15c commission per cup. Your recipe needs 100 lemons, half a packet of sugar and water to make 15 cups of lemonade. You think you can sell one cup of lemonade for R2.50.

a. Complete the budget below to calculate if you will be able to make a profit if you sell 30 cups a week.

<table>
<thead>
<tr>
<th>Income</th>
<th>Estimated amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemonade sold</td>
<td></td>
</tr>
</tbody>
</table>

Estimated total income

Expenses

<table>
<thead>
<tr>
<th>Expenses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemons</td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td></td>
</tr>
<tr>
<td>Cups</td>
<td></td>
</tr>
<tr>
<td>Commission (brother)</td>
<td></td>
</tr>
</tbody>
</table>

Estimated total expenses

Net Income

b. Are you making a profit or a loss? __________________________
c. What percentage profit or loss do you make on the cost?

d. If you decide to increase your profit by 20 %, what would your new selling price have to be?

e. Your brother does not want to sell the lemonade anymore and you have to sell it yourself. What will the effect on your profit be?

2. It is going very well with your lemonade stall and you are still making 100 % profit on the cost of 30 cups a week sold at R2.50 a cup and your brother continues to help you. You decide to buy a lemonade maker.

The lemonade maker will cost you R1 750 and you asked your family to lend you the money. They agree to lend you the money at 15 % simple interest per year. You have to repay them within one year. With the lemonade maker you will be able to sell 150 cups per month. Will you still be profitable? What percentage profit or loss will you make?

Problem solving

You are buying dried fruit in big bags and repacking them into smaller bags. A big bag of mixed dried fruit cost you R476 and you can repack it into 50 small bags. The trip to the market cost you R50 and the small bags 50c each. For how much must you sell the small bags of dried fruit to make a 33.33 % profit?
Look at the following pattern:

If we have one circle in the first pattern, four circles in the second pattern and nine circles in the third pattern, how many circles will we have in the tenth pattern? How did you work out your answer?

If we have one cube in the first pattern, eight cubes in the second pattern and twenty seven cubes in the third pattern. How many cubes will we have in the fourth pattern? How did you work out your answer?

1. The numbers above are called _______ and _______ numbers.

2. Write the following as square numbers:

 Example: \(13 \times 13 = 13^2\)

 a. \(2 \times 2 = \)
 b. \(7 \times 7 = \)
 c. \(5 \times 5 = \)
 d. \(10 \times 10 = \)
 e. \(3 \times 3 = \)
 f. \(11 \times 11 = \)

3. Write the following as multiplication sentences:

 Example: \(15^2 = 15 \times 15\)

 a. \(5^2 = \)
 b. \(9^2 = \)
 c. \(4^2 = \)
 d. \(2^2 = \)
 e. \(7^2 = \)
 f. \(12^2 = \)
4. For 3^2, identify: a. the base number. b. the exponent.

5. Colour all the square numbers on the multiplication board. What pattern do you see?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

6. Arrange these numbers in ascending order:

$2, 9^2, 5^2, 5, 6^2, 2^2, 8^2, 7^2, 12^2, 1^2, 3^2, 10, 11^2, 4^2, 10^2$

7. Arrange the above numbers in descending order:

8. Fill in $<$, $>$ or $=$

a. $2^2 \underline{2} \times 2$

b. $5^2 \underline{5} \times 2$

c. $9^2 \underline{9} \times 9$

d. $8^2 \underline{2} \times 8$

e. $11^2 \underline{10} \times 11$

f. $3 \times 3 \underline{3^2}$

9. Numbers which have an exponent of 2 are called $\underline{\text{square}}$ numbers.
10. Write the following as cube numbers:

Example: $6 	imes 6 	imes 6 = 6^3$

a. $3 	imes 3 	imes 3 = \underline{\hspace{2cm}}$

b. $2 	imes 2 	imes 2 = \underline{\hspace{2cm}}$

c. $5 	imes 5 	imes 5 = \underline{\hspace{2cm}}$

11. Write the following as multiplication sums:

Example: $6^3 = 6 	imes 6 	imes 6$

a. $2^3 = \underline{\hspace{2cm}}$

b. $4^3 = \underline{\hspace{2cm}}$

c. $1^3 = \underline{\hspace{2cm}}$

12. Explain in your own words what a cube number is.

13. Identify:
 a. the base number $\underline{\hspace{2cm}}$
 b. the exponent 4^3

14. State the number of cubes in each of the diagrams below using exponents. Then arrange these numbers written in exponential form in ascending order.

 a.
 b.
 c.
 d.

15. Arrange these numbers in ascending order:

 $3^3, 4^3, 2^3, 5^3, 1^3$

 \underline{\hspace{2cm}}
16. Fill in <, > or =:
 a. $2^2 \underline{} 2 \times 2$
 b. $125 \underline{} 5^3$
 c. $1 \times 1 \underline{} 1^3$
 d. $27 \underline{} 3^3$
 e. $6 \underline{} 3^3$
 f. $5^3 \underline{} 8$

17. First estimate and then calculate the answers.

 Example: $5^2 + 3^2 = 25 + 9 = 34$

 a. $2^2 + 10^2 = \underline{}$
 b. $6^2 - 3^2 = \underline{}$
 c. $8^2 + 10^2 = \underline{}$

18. First estimate and then calculate the answers.

 Example: $5^2 + 3^3 = 25 + 27 = 52$

 a. $6^3 - 5^2 = \underline{}$
 b. $2^2 + 3^3 = \underline{}$
 c. $9^3 - 4^2 = \underline{}$

19. First estimate and then calculate the answers.

 a. $2^2 + 3^3 - 1^3 = \underline{}$
 b. $5^3 - 4^3 + 3^3 = \underline{}$
 c. $4^2 + 4^3 + 2^2 = \underline{}$

Problem solving

Add the smallest square number and the largest square number that is smaller than 100. Do the same with cube numbers.
Square and cube roots

What do you think these diagrams represent?

3 \times 3 = 9,
so the square root of 9 is 3.

\begin{array}{|c|c|c|}
\hline
1 & 2 & 3 \\
\hline
4 & 5 & 6 \\
\hline
7 & 8 & 9 \\
\hline
\end{array}

3 \times 3 \times 3 = 27,
so the cube root of 27 is 3.

\begin{array}{|c|c|c|}
\hline
& & \sqrt[3]{27} \\
\hline
\end{array}

1. What square number and root do the diagrams below represent?

Example:

a. \(3 \times 3 = 9\), so the square number is 9 and the square root \((\sqrt{\ })\) of 9 is 3

\[
\begin{array}{|c|c|c|}
\hline
& & \sqrt{3} \\
\hline
\end{array}
\]

2. Write the following using the symbol for square root:

a. The square root of 9

b. The square root of 25

3. Calculate the square root:

Example: \(\sqrt{9} = \sqrt{3 \times 3} = 3\)

a. \(\sqrt{81} = \)

b. \(\sqrt{1} = \)

c. \(\sqrt{121} = \)

d. \(\sqrt{64} = \)

e. \(\sqrt{36} = \)

4. Write the following in ascending order:

\(\sqrt{16}, \sqrt{4}, \sqrt{25}, \sqrt{9}, \sqrt{36} \)

5. Write the following in ascending order:

\(\sqrt{4}, \sqrt{3}, \sqrt{2} \)
6. Write the following in descending order:
\[\sqrt{25}, 2^2, \sqrt{16}, \sqrt{100}, 9^2\]

7. Fill in <, > or =
 a. \[\sqrt{36} \quad \sqrt{25}\]
 b. \[\sqrt[3]{81} \quad \sqrt[3]{27}\]
 c. \[\sqrt{9} \quad \sqrt{16}\]
 d. \[\sqrt[3]{81} \quad 3^2\]
 e. \[3^2 \quad \sqrt{36}\]
 f. \[4^2 \quad \sqrt{25}\]

8. What is the cube root of these cubes below?

 Example: \(3 \times 3 \times 3 = 27\), so the cube root of 27 is 3

 a. (Cube)
 b. (Cube)
 c. (Cube)
 d. (Cube)

 a. so the cube root of _____ is ______
 b. ____________________________
 c. ____________________________
 d. ____________________________

9. Write the following using the symbol for cube root:
 a. The cube root of 27
 b. The cube root of 8

continued
10. Calculate the cube root.

Example: \(\sqrt[3]{27} \)
Since \(27 = 3 \times 3 \times 3 \)

\[\sqrt[3]{27} = \sqrt[3]{3 \times 3 \times 3} = 3 \]

a. \(\sqrt[3]{8} \)
b. \(\sqrt[3]{64} \)
c. \(\sqrt[3]{1} \)

11. Write the following in ascending order:

\(\sqrt[3]{27}; \sqrt[3]{8}; \sqrt[3]{125}; \sqrt[3]{1} \)

12. Write the following in descending order:

\(\sqrt[3]{3.3.3}; \sqrt[3]{2.2.2}; \sqrt[3]{4.4.4}; \)

13. Write the following in ascending order:

\(2^3; 1^3; \sqrt[3]{27}; 4^3 \)

14. Fill in <, > or =

a. \(\sqrt[3]{8} \) \(\square \) \(\sqrt[3]{1} \)
b. \(3^2 \) \(\square \) \(\sqrt[3]{36} \)
c. \(4^2 \) \(\square \) \(\sqrt[3]{25} \)

d. \(\sqrt[3]{125} \) \(\square \) \(5^3 \)
e. \(\sqrt[3]{8} \) \(\square \) \(8 \)
f. \(\sqrt[3]{125} \) \(\square \) \(2 \)

15. Write the following in ascending order:

\(\sqrt[3]{27}; \sqrt[3]{8}; \sqrt[3]{125}; \sqrt[3]{1} \)

Example: \(\sqrt{16} + \sqrt{25} \)

\[= 4 + 5 = 9 \]

a. \(\sqrt{9} + \sqrt{16} = \)

b. \(\sqrt{25} - \sqrt{16} = \)

c. \(\sqrt{100} + \sqrt{81} = \)

d. \(\sqrt{25} + \sqrt{64} = \)
17. Calculate.

Example: \(\sqrt[3]{64} - \sqrt[3]{27} \)
\[= 4 - 3 \]
\[= 1 \]

a. \(\sqrt[3]{216} + \sqrt[3]{27} = 9 + 3 = 12 \)

b. \(\sqrt[3]{27} - \sqrt[3]{8} = 3 - 2 = 1 \)

c. \(\sqrt[3]{64} + \sqrt[3]{216} = 4 + 6 = 10 \)

d. \(\sqrt[3]{27} + \sqrt[3]{64} = 3 + 4 = 7 \)

18. Calculate.

Example: \(\sqrt[3]{125} - \sqrt{16} \)
\[= 5 + 4 \]
\[= 9 \]

a. \(\sqrt{216} - \sqrt{25} = 12 - 5 = 7 \)

b. \(\sqrt{16} + \sqrt{8} = 4 + 2 = 6 \)

c. \(\sqrt{25} + \sqrt{8} = 5 + 2 = 7 \)

d. \(\sqrt{25} - \sqrt{27} = 5 - 3 = 2 \)

19. Calculate.

Example: \(\sqrt[3]{27} + 3^2 - \sqrt{25} \)
\[= 3 + 9 - 5 \]
\[= 7 \]

a. \(\sqrt[3]{216} + 4^2 - \sqrt{16} = 6 + 16 - 4 = 18 \)

b. \(9^2 - \sqrt[3]{27} + \sqrt{4} = 81 - 3 + 2 = 79 \)

c. \(3^3 + 4^3 + \sqrt{25} = 27 + 64 + 5 = 96 \)

d. \(\sqrt{144} - 2^2 + \sqrt{8} = 12 - 4 + 2.828 = 10.828 \)

Problem solving

Square and cube fun
a. Write down all the two-digit square numbers.
b. Write down all the three-digit cube numbers.
c. Write down the square roots of all the two-digit square numbers.
d. Write down the cube roots of all the two-digit and three-digit cube numbers.
In science, we deal with numbers that are sometimes extremely large or extremely small.

There are 602 000 000 000 000 000 000 water molecules in 18 grams of water. A shorter way of writing the same number is exponential notation to show all those zeros as a number to the power of ten:

$6.02 	imes 10^{23}$ is the shorter way of representing the number of all those molecules. Such a number can be read as “Six comma zero two to the power of twenty three.”

1. How fast can you calculate the following?

Example: $10 \times 10 \times 10 \times 10 = 10000$

<table>
<thead>
<tr>
<th>a. $10 \times 10 =$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b. $10 \times 10 \times 10 \times 10 =$</td>
<td></td>
</tr>
<tr>
<td>c. $10 \times 10 \times 10 \times 10 =$</td>
<td></td>
</tr>
<tr>
<td>d. $10 \times 10 \times 10 =$</td>
<td></td>
</tr>
<tr>
<td>e. $10 \times 10 \times 10 \times 10 \times 10 \times 10 =$</td>
<td></td>
</tr>
<tr>
<td>f. $10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 =$</td>
<td></td>
</tr>
</tbody>
</table>

2. Complete the table.

<table>
<thead>
<tr>
<th>Sum</th>
<th>Exponential format</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 10×10</td>
<td>10^2</td>
<td>100</td>
</tr>
<tr>
<td>b. $10 \times 10 \times 10$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. $10 \times 10 \times 10 \times 10$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. $10 \times 10 \times 10 \times 10 \times 10$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. $10 \times 10 \times 10 \times 10 \times 10 \times 10$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To type 10^4, you can type ten:

Then use the x^y button and type 4:

The result should be ten thousand:
3. Identify the base number and the exponent: 10^8.

4. Match column B with column A:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^7</td>
<td>a. ten to the power of nine</td>
</tr>
<tr>
<td>10^5</td>
<td>b. ten to the power of seven</td>
</tr>
<tr>
<td>10^8</td>
<td>c. ten to the power of five</td>
</tr>
<tr>
<td>10^3</td>
<td>d. ten to the power of eight</td>
</tr>
<tr>
<td>10^9</td>
<td>e. ten to the power of three</td>
</tr>
</tbody>
</table>

5. Write the following in exponential form.

Example: $10 \times 10 \times 10 = 10^3$

a. $10 \times 10 = \underline{\hspace{4cm}}$

b. $10 \times 10 \times 10 \times 10 = \underline{\hspace{4cm}}$

c. $10 \times 10 \times 10 \times 10 \times 10 = \underline{\hspace{4cm}}$

6. Expand the following statements:

Example: $10^3 = 10 \times 10 \times 10$

a. $10^2 = \underline{\hspace{2cm}}$

b. $10^4 = \underline{\hspace{2cm}}$

c. $10^5 = \underline{\hspace{2cm}}$

d. $10^6 = \underline{\hspace{2cm}}$

e. $10^7 = \underline{\hspace{2cm}}$

f. $10^8 = \underline{\hspace{2cm}}$

7. Your cousin wrote this in her maths book: 10^5. What does this mean?

8. Give some practical examples of where exponential notation is used.

Problem solving

Write one billion in exponential notation.
1. Write in exponential form.

Example: \(10 \times 10 \times 10 \times 10 = 10^4\)

a. \(10 \times 10 \times 10 \times 10 \times 10 = \)

b. \(10 \times 10 \times 10 = \)

c. \(10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = \)

d. \(10 \times 10 \times 10 \times 10 = \)

e. \(10 \times 10 = \)

2. Write in expanded form.

Example: \(10^4 = 10 \times 10 \times 10 \times 10\)

a. \(10^3 = \)

b. \(10^6 = \)

c. \(10^7 = \)

d. \(10^5 = \)

e. \(10^4 = \)

f. \(10^6 = \)

3. Calculate.

Example: \(10^4 + 10^3 = 10000 + 1000 = 11000\)

a. \(10^3 + 10^2 = \)

b. \(10^4 + 10^6 = \)

c. \(10^5 + 10^3 = \)
4. Calculate.

Example: \[4 + 10^3 \]
 \[= 4 + 1\,000 \]
 \[= 1\,004 \]

a. \[5 + 10^4 = \]

b. \[10^5 \times 9 = \]

c. \[10^4 \times 7 = \]

5. Calculate.

Example: \[2 \times 10^4 + 3 \times 10^5 \]
 \[= 2 \times 10\,000 + 3 \times 100\,000 \]
 \[= (2 \times 10\,000) + (3 \times 100\,000) \]
 \[= 20\,000 + 300\,000 \]
 \[= 320\,000 \]

a. \[3 \times 10^3 + 4 \times 10^4 = \]

b. \[8 \times 10^4 + 3 \times 10^2 = \]

c. \[5 \times 10^2 + 8 \times 10^5 = \]

6. Calculate.

Example: \[2 \times 10^4 + 3 \times 10^3 + 4 \times 10^5 \]
 \[= 2 \times 10\,000 + 3 \times 1\,000 + 4 \times 100\,000 \]
 \[= (2 \times 10\,000) + (3 \times 1\,000) + (4 \times 100\,000) \]
 \[= 20\,000 + 3\,000 + 400\,000 \]
 \[= 423\,000 \]

a. \[1 \times 10^2 + 8 \times 10^5 + 3 \times 10^6 = \]

b. \[3 \times 10^3 + 8 \times 10^3 + 7 \times 10^7 = \]

c. \[5 \times 10^3 + 6 \times 10^2 + 2 \times 10^4 = \]

d. Make your own number sentence and calculate it.

Problem solving

Calculate ten to the power of three plus ten to the power of two plus three times ten to the power of one.
Estimate and calculate more exponents

Match the word with the picture and explain your answer to a friend.

Square numbers

Cube numbers

Power of ten

A number to the power of 0. What does this mean?

Numbers to the power of ten can be useful for writing very big numbers. For example, the total volume of water stored on earth is 1 460 000 000 km³. We can also write this as 146 x 10⁹ km³.

1. Calculate.

Example: \(2^2 + 2^3 = 4 + 8 = 12\)

<table>
<thead>
<tr>
<th>a. (2^2 + 12^2 =)</th>
<th>b. (4^2 + 10^2 =)</th>
<th>c. (2^3 + 11^2 =)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. (6^3 + 1^3 =)</td>
<td>e. (3^2 + 2^3 =)</td>
<td>f. (5^2 + 2^3 =)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Calculate.

Example: \(2^2 + 3^3 + 4^2 = 4 + 27 + 16 = 47\)

<table>
<thead>
<tr>
<th>a. (2^2 + 4^3 + 3^2 =)</th>
<th>b. (5^3 + 6^2 + 9^2 =)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>c. (7^2 + 2^3 + 8^1 =)</td>
<td>d. (5^2 + 10^2 + 12^2 =)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>e. (11^2 + 4^2 + 3^3 =)</td>
<td>f. (5^3 + 9^2 - 6^2 =)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. How fast can you calculate the following?

<table>
<thead>
<tr>
<th>a. (3^2 =)</th>
<th>b. (3^3 =)</th>
<th>c. (5^2 =)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. (11^2 =)</td>
<td>e. (2^4 =)</td>
<td>f. (2^2 =)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. (5^3 =)</td>
<td>h. (4^2 =)</td>
<td>i. (6^2 =)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Calculate.

Example: \((12 - 9)^3\)
= \((3)^3\)
= 27

a. \((8 - 4)^3\) =

b. \((7 + 1)^2\) =

c. \((9 + 2)^2\) =

d. \((18 - 9)^2\) =

e. \((11 - 6)^3\) =

f. \((16 - 11)^3\) =

5. Create your own number sentences and calculate the answers.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Add three cube numbers.</td>
<td>b. Add three square numbers.</td>
<td>c. Add two cube numbers and one square number.</td>
</tr>
<tr>
<td>d. Subtract a square number from a cube number.</td>
<td>e. The sum of two cube and two square numbers.</td>
<td>f. The sum of three to the power of two and three cube numbers.</td>
</tr>
<tr>
<td>g. Use multi operations on three cube numbers.</td>
<td>h. Use multi operations on four square numbers.</td>
<td>i. Add a 3-digit cube number to a 2-digit square number.</td>
</tr>
</tbody>
</table>

Problem solving

What is four to the power of three minus one to the power of one plus one hundred to the power of one. Check your answer using a calculator.
If:

- square numbers are 1, 4, 9, 16, 25, ...
- Cube numbers are 1, 8, 27, 64, 81, ...

How can I write it in exponential form?

1. Extend the pattern another 3 times (up the power of 5).

 a. \(20 = 20^1 \)
 \[20 \times 20 = 20^2 \]

 b. \(10 = 10^1 \)
 \[10 \times 10 = 10^2 \]

 c. \(17 = 17^1 \)
 \[17 \times 17 = 17^2 \]

 d. \(38 = 38^1 \)
 \[38 \times 38 = 38^2 \]

 e. \(59 = 59^1 \)
 \[59 \times 59 = 59^2 \]

 f. \(15 = 15^1 \)
 \[15 \times 15 = 15^2 \]

2. Expand the exponential notation and use your calculator to calculate the answer.

 Example: \(18^4 \)
 \[= 18 \times 18 \times 18 \times 18 \]
 \[= 104,976 \]

 a. \(22^3 \)

 b. \(81^2 \)

 c. \(74^4 \)

 d. \(39^1 \)

 e. \(97^7 \)

 f. \(32^8 \)
3. Extend the pattern one more time.

 a. \(a = a^1 \)
 \(a \times a = a^2 \)

 b. \(b = b^1 \)
 \(b \times b = b^2 \)

 c. \(m = m^1 \)
 \(m \times m = m^2 \)

 d. \(r = r^1 \)
 \(r \times r = r^2 \)

 e. \(k = k^1 \)
 \(k \times k = k^2 \)

 f. \(n = n^1 \)
 \(n \times n = n^2 \)

4. Expand.

 Example: \(m^4 = m \times m \times m \times m \)

 a. \(a^3 \)

 b. \(b^2 \)

 c. \(r^4 \)

 d. \(m^1 \)

 e. \(p^7 \)

 f. \(p^8 \)

5. Calculate the answers for questions 3 and 4, if:

\[
\begin{align*}
 a &= 10 \\
 b &= 3 \\
 m &= 100 \\
 r &= 5 \\
 k &= 1 \\
 n &= 20 \\
 p &= 2
\end{align*}
\]

You will need additional paper to do these calculations.

Problem solving

I have fifty-four to the power of one, and seventy-nine to the power of one. What will the total be if I add these two numbers?
1. How do you measure angles using a protractor?
Fill in the missing words. These words can help you (you can use a word more than once): angle, sides, curved, centre, zero

a. Find the __________ hole above the straight edge of the protractor.

b. Place the hole over the vertex of the __________ you wish to measure.

c. Line up the ________ on the straight edge of the protractor with one of the ________ of the angle.

d. Find the point where the second ________ of the angle intersects the ________ edge of the protractor.

2. Name four professions where people use protractors.

a. __________________________

b. __________________________

c. __________________________

d. __________________________
3. Measure each angle (you can extend the rays to help measure).

 a.
 b.
 c.
 d.
 e.
 f.
 g.
 h.
 i.
 j.

4. Draw an angle.
 a. Smaller than 90 degrees. Measure it.
 b. Bigger than 90 degrees. Measure it.

Problem solving

If you measure an angle that is between 0° and 45°, how big could the angle be? Where in nature do we find an angle of that size?
Angles and sides

1. What is an angle?

2. Match column A with column B:

<table>
<thead>
<tr>
<th>A: Name of angle</th>
<th>B: Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute angle</td>
<td>90°</td>
</tr>
<tr>
<td>Right angle</td>
<td>360°</td>
</tr>
<tr>
<td>Obtuse angle</td>
<td>Less than 90°</td>
</tr>
<tr>
<td>Straight angle</td>
<td>Between 180° and 360°</td>
</tr>
<tr>
<td>Reflex angle</td>
<td>Between 90° and 180°</td>
</tr>
<tr>
<td>Revolution</td>
<td>180°</td>
</tr>
</tbody>
</table>

3. What is a protractor?
4. Label this protractor.

5. Measure and name each angle.
 a. [Diagram with 30° angle labeled as acute angle]
 b. [Blank angle]
 c. [Blank angle]
 d. [Blank angle]
 e. [Blank angle]
6. What is a side (or ray)?

7. Look at the pictures of the protractors.
Write down the size of the interior angle being measured each time and also use your ruler to measure the length of the sides of each shape.

a.
Angle: 60°
Length of sides: 28 mm × 3

b.
Angle:
Length of sides:

c.
Angle:
Length of sides:

d.
Angle:
Length of sides:
8. Name the angles.

<table>
<thead>
<tr>
<th>Angle size</th>
<th>Name of angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°</td>
<td>acute</td>
</tr>
<tr>
<td>96°</td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>172°</td>
<td></td>
</tr>
<tr>
<td>200°</td>
<td></td>
</tr>
<tr>
<td>145°</td>
<td></td>
</tr>
<tr>
<td>60°</td>
<td></td>
</tr>
<tr>
<td>2°</td>
<td></td>
</tr>
<tr>
<td>359°</td>
<td></td>
</tr>
<tr>
<td>240°</td>
<td></td>
</tr>
</tbody>
</table>

9. How many angles can you see in this picture? What kind are they?

Problem solving

a. Add the angles that are shown on the diagram.

b. If I have an angle that is not an acute angle and is smaller than 180°, what type of angle is it?
Size of angles

What is an angle? Make three drawings of angles that you can see in your home.

1. Find angles in these pictures and measure them using your protractor. (Note: the angles in the pictures will not be all the same as they are on real objects because of perspective in the pictures).
What is an angle? Make three drawings of angles that you can see in your home.

2. Fill in the degrees on the protractors.

a.

b.

3. Measure the angle sizes and fill them in on the shapes?

a.

b.

c.

continued
4a. The angle measured below is 290°. Is it possible to get a polygon with an interior angle of 290°? Explain your answer.

b. What is the size of the angle? Draw a polygon that has the same interior angle.
5. Mark 3 angles on each picture and measure them.

Problem solving

What are the most common angles you will find in your home?
What angles are the most common in motor vehicles?
Using a protractor

Look at the pictures. What are these people using their protractors for?

1. The step-by-step instructions below show how to draw a 45° angle. Follow these instructions to draw the angles given in the questions.

Step 1: Draw a line segment. Label it AB.

Step 2: Place the protractor so that the origin (small hole) is over the point A. Rotate the protractor so that the base line is exactly along the line AB.

Step 3: Using (in this case) the inner scale, find the angle desired – In 1. it is 45°.

Step 4: Make a mark at this angle, and remove the protractor.

Step 5: With the protractor or a ruler draw a straight line from A to the mark you just made. Label this point C.

Step 6: The line drawn makes an angle BAC with a measure of 45°.

1. Draw a 45° angle ABC.

2. Draw a 100° angle CDE.

3. Draw a 175° angle JKL.
2. Use a ruler and a protractor to draw and label geometric figures. Write down the steps you go through to construct each one.

a. A 60° angle ABC.

b. A triangle with angles including a 45° angle and a 65° angle.

c. A quadrilateral with angles including a 70° angle and a 100° angle. A quadrilateral has four sides.

Problem solving

Draw a polygon with six sides where one angle is 30°.
Parallel and perpendicular lines

Look at the structures. Identify the parallel, perpendicular and line segments.

1. What mathematical instrument is a compass? Draw a picture of a compass.

2. Match column A with column B.

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line segment</td>
<td></td>
</tr>
<tr>
<td>Parallel lines</td>
<td></td>
</tr>
<tr>
<td>Perpendicular lines</td>
<td></td>
</tr>
</tbody>
</table>

3. Draw the following line segments with a ruler.
 a. 5 cm
 b. 7.5 cm
 c. 65 mm
 d. 23 mm
 e. 8.9 cm
4. Revision: Construct a perpendicular line to bisect a given line.
Use the guidelines to help you

Step 1
Draw a line and mark points A and B on it. Put the compass point on A and open it so that the pencil touches point B. (So you have “measured” the length of AB with the pair of compasses.)

Step 2
Leaving the compass point on A, draw an arc with the compass approximately two thirds of the line length.

Step 3
With the compasses’ width the same, move the compass point to B and draw another arc which crosses the first arc at two points. Label these points C and D.

Step 4
Draw a line through points C and D bisecting the line AB at E.

Measure angle AEC and BED to check how accurate your construction is.

5. What symbols do we use to show:

- Lines that are perpendicular?
- Sides that are equal?
- Sides that are parallel?

Problem solving

In reality are these lines and pillars parallel or not? Say why or why not.
Construct angles and a triangle

Identify the triangles and estimate the size of the angles.

1. Construct a 45° angle. Use the guidelines to help you.

Step 1
Follow the steps to draw a perpendicular line on page 57.

Step 2
Leaving the compass point on C, draw an arc with the compass roughly halfway between C and B. Then place the compass point on B and draw an arc crossing the first one.

Step 3
Mark it as D and draw the line which creates two 45° angles.

To construct a 45° angle you bisect a 90° angle.

2. Give five everyday examples of where we will find 45° angles.
3. Construct an equilateral triangle. Follow the steps and construct your triangle below.

Step 1
Draw a line. Make a marking on it (A).

Step 2
Put the compass point on A and open it so that the pencil touches B. (So you have "measured" the length of AB with the pair of compasses.)

Step 3
Leaving the compass point on A, draw an arc with the compass roughly where you think the other vertex (corner) of the triangle is going to be. (The distance from A to this point is going to be the same as the length of AB.)

Step 4
Do not adjust the compass. Now move the compass point to B and draw another arc which crosses the first. Label it C.

Step 5
Since the lengths of AC and BC are both equal to the length of AB, we have three points all the same distance from each other. If we join them up, we therefore have an equilateral triangle, with each angle equal to 60°.

Measure the angles to determine how accurate your construction is.
4. Construct a triangle with one angle of 90° and one angle of 60° without using a protractor.
5. Construct a 30° angle. Use the guidelines below.

Follow step 1 to construct a 60° angle (as in Question 3 on page 107) and then follow steps 2 and 3 below.

To construct a 30° angle you bisect a 60° angle.

Problem solving

Construct any figure with at least one 30° and one 45° angle.
Circles

What do all these pictures have in common?

1. Label the circle.
 Use the following words: chord, diameter, radius and centre.
 a.
 b.
 c.

2. What is a circle?

3. Measure the diameter of each circle. What is the radius of each circle?
 a. Underneath each circle write its radius.
 b. Draw any chord on each circle and measure it.

 (i).
 Radius: _____
 Chord: _____

 (ii).
 Radius: _____
 Chord: _____

 (iii).
 Radius: _____
 Chord: _____

How to draw a circle

To draw a circle accurately, use a pair of compasses.

Align the pencil lead with the compass point.
4. Draw these circles.

a. A circle with a diameter of 4 cm.

b. A circle with a diameter of 36 mm.

c. A circle with a diameter of 2.6 cm.

d. A circle with a diameter of 30 mm.

Problem solving

Draw a circle with a radius of 25 mm. Continue drawing circles with 25 cm radii to fill a separate sheet of paper with circle patterns.
What do these triangular road signs mean? Draw another two.

1. Measure each of these triangles:
 a. Measure the sides.
 b. What do you notice?
 c. Measure the angles of the triangles.
 d. Label each triangle.

2. A triangle called an equilateral triangle has three equal sides and three equal angles. Draw three different equilateral triangles. Label each.
3. Measure each of these triangles:
 a. Measure the sides.
 b. What do you notice?
 c. Measure the angles of the triangles.
 d. Label each triangle.

4. A triangle is called an isosceles triangle if it has two sides of equal length. The angles opposite these two side will also be equal. Draw three different isosceles triangles.
5. Measure each of these triangles:
 a. Measure the sides.
 b. What do you notice?
 c. Measure the angles of the triangles.
 d. What do you notice?
 e. Label each triangle.

6. A scalene triangle has three sides of different lengths. Draw three different scalene triangles.
7. Measure each of these triangles:
 a. Measure the sides.
 b. What do you notice?
 c. Measure the angles of the triangles.
 d. What do you notice?
 e. Label each triangle.

8. Draw three triangles of different size each with a right angle (90°).

Problem solving

Create your own gift wrapping by drawing triangles on a sheet of paper. You should use all the types of triangles you have learned about.
1. Complete this table.

<table>
<thead>
<tr>
<th>Polygon</th>
<th>Number of sides</th>
<th>Angle size</th>
<th>Total sum of angles</th>
</tr>
</thead>
</table>

Measure all the other angles. What do you notice?

Test your answers using the formula for calculating the angles of a polygon: \((\text{number of sides} - 2) \times 180°\)

2. What is this? Where would you find it? What polygon(s) can you identify?

a. ![Image](image1.png)

b. ![Image](image2.png)
3. What geometric figures do you see?

a.

b.

4. Identify, name and describe the polygons in these pictures.

a.

b.

continued
5. The tangram in Cut-out 1 is a dissection puzzle. It consists of seven pieces, called tans, which fit together to form a shape of some sort. The objective is to form a specific shape with seven pieces. The shape has to contain all the pieces, which may not overlap.

a. One of the shapes is a square. Build a large square with all the tangram pieces and then make a drawing of it.

b. Make a rectangle with all the pieces. Make a drawing of it.

c. Make a parallelogram with all the pieces. Make a drawing of it.

d. Make a trapezium with all the pieces. Make a drawing of it.

e. Make a triangle with all the pieces. Make a drawing.

f. Make any other polygon with the tangram pieces. Make a drawing.
6. Say whether each of the following is a quadrilateral or not. Give reasons for your answers.

a.

b.

c.

d.

e.

f.

Problem solving

What fraction of the tangram is this square?
Congruent shapes have exactly the same size, shape and angles.

Similar shapes have the same shape and angles but different sizes.

Which triangles are congruent?
Which triangles are similar?

1. What do you notice about these pictures?

2. What do you notice about these pictures?

3. Which of the following shapes are congruent?

4. Draw a set of four similar shapes (one in each box).
5. Are these shapes congruent? Give reasons for your answer.

- a.
- b.
- c.

6. All these triangles are congruent. Write down what is the same in both triangles. Make a drawing similar to one triangle. We have done the first one for you.

Use the colours to help you. Also use $S =$ side and $A =$ angle.

- a.
- b.
- c.
- d.

Problem solving

Where in nature will we see similarity and congruency? Draw a picture to illustrate your answer.
What is this?

A fraction is written with the bottom part (the denominator) telling you how many parts the whole is divided into, and the top part (the numerator) telling how many of those parts you have.

A fraction

numerator
denominator

1. Complete the following:
 a. \(\frac{1}{4}; \frac{2}{4}; \ldots 1 \)
 b. \(\frac{1}{9}; \frac{2}{9}; \frac{3}{9}; \ldots 1 \)
 c. \(\frac{1}{11}; \frac{2}{11}; \frac{3}{11}; \ldots 1 \)
 d. \(\frac{1}{5}; \frac{2}{5}; \frac{3}{5}; \ldots 1 \)
 e. \(\frac{1}{6}; \frac{2}{6}; \frac{3}{6}; \ldots 1 \)
 f. \(\frac{1}{8}; \frac{2}{8}; \frac{3}{8}; \ldots 1 \)

2. Complete the number lines.
 a.

 b.

 c.

 d.

 e.

Where in daily life do we need to know about fractions and number lines?
3. Count from:
 a. two tenths to four tenths.
 b. one twentieth to nine twentieths.
 c. four fifteenths to ten fifteenths.
 d. one hundredth to eight hundredths.
 e. ten fiftieths to twelve fiftieths.

4. Complete the number lines:
 a.
 \[0 \quad 1\]
 b.
 \[0 \quad 1\]
 c.
 \[0 \quad 1\]
 d.
 \[0 \quad 1\]
 e.
 \[0 \quad 1\]

 f. How do these number lines differ from the ones in question 2?

5. Say whether it is a proper or improper fraction, or a mixed number:
 a. \[\frac{2}{4}\]
 b. \[\frac{6}{2}\]
 c. \[\frac{1}{2}\]
 d. \[\frac{8}{5}\]
 e. \[\frac{1}{5}\]
 f. \[\frac{7}{4}\]

6. Write down:
 a. Five proper fractions.
 b. Five improper fractions.
 c. Five mixed numbers.

Problem solving

Name five fractions that are between one quarter and two quarters.
Equivalent fractions

Fill in the correct fraction at each of the coloured marks on the number lines below. What do the fractions at the red colour marks have in common? What about the fractions at the blue, green and yellow marks?

Equivalent fractions have the same value, even though they look different. Example: \(\frac{2}{3} = \frac{4}{6} \) are equivalent, because they are both \(\frac{1}{2} \).

1. What fraction equals ___? Draw a diagram to show that the two fractions are equivalent.

 Example: \(\frac{1}{3} \) \(\frac{2}{6} \)

 a. \(\frac{1}{2} \) b. \(\frac{1}{7} \) c. \(\frac{1}{6} \)

 d. \(\frac{1}{10} \) e. \(\frac{1}{12} \) f. \(\frac{1}{3} \)

2. Write the next or previous equivalent fraction for:

 Example: \(\frac{1}{3} = \frac{2}{6} = \frac{3}{9} = \frac{4}{12} \)

 a. \(\frac{2}{4} \) b. \(\frac{3}{4} \) c. \(\frac{4}{14} \)

 d. \(\frac{8}{10} \) e. \(\frac{4}{10} \) f. \(\frac{4}{6} \)

3. What happened to the numerator and denominator in question 2?

 a. b. c. d. e. f.

4. Write down three equivalent fractions for each mixed number and make a drawing.

 Example: \(1 \frac{1}{3} = 1 \frac{2}{6} = 1 \frac{3}{9} = 1 \frac{4}{12} \)

 What happened to the denominators and numerators? Always start with the given number.

 a. \(1 \frac{1}{2} \) b. \(3 \frac{2}{3} \) c. \(4 \frac{1}{2} \)

 d. \(6 \frac{1}{3} \) e. \(2 \frac{3}{4} \) f. \(2 \frac{4}{5} \)

Problem solving

What have music notes and equivalent fractions in common? Fill in the answers.

1 whole note = 2 half notes
1 half note + 2 quarter notes = 1 whole note
4 eighth notes = 1 half note
32 Simplest form

1. What is the highest common factor?

Example:

Highest common factor (HCF)
- Factors of 4: \{1, 2, 4\}
- Factors of 6: \{1, 2, 3, 6\}
- HCF = 2

So 2 is the biggest number that can divide into 4 and 6.

a. Factors of 3 and of 4

b. Factors of 5 and of 6

c. Factors of 6 and of 12

d. Factors of 3 and of 9

e. Factors of 7 and of 8

f. Factors of 11 and of 10

2. Write in the simplest form.

Example:

\[
\frac{12}{16} = \frac{12 \div 4}{16 \div 4} = \frac{3}{4}
\]

HCF:
- Factors of 12: \{1, 2, 3, 4, 5, 6, 12\}
- Factors of 16: \{1, 2, 4, 8, 16\}

a. \(\frac{6}{18}\)

b. \(\frac{15}{25}\)

c. \(\frac{3}{9}\)

d. \(\frac{7}{21}\)

e. \(\frac{4}{36}\)

f. \(\frac{18}{36}\)

3. Fill in the missing words.

(common factor, numerator, denominator)

a. Fractions can be simplified when the \(\underline{\text{common factor}}\) and \(\underline{\text{numerator}}\) have a \(\underline{\text{common factor}}\) in them.

b. Give five examples of fractions that can be simplified.

Problem solving

What is \(\frac{324}{472}\) in its simplest form?
Add common fractions with the same and different denominators

Give five fractions where the denominators are the same.
Give five fractions where the denominators are different.

<table>
<thead>
<tr>
<th>Proper fraction</th>
<th>Improper fraction</th>
<th>Mixed number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>5/4</td>
<td>1 1/2</td>
</tr>
</tbody>
</table>

Sometimes we need to change proper fractions to improper fractions vice versa.

1. Add the following, write it as a mixed number, and simplify if necessary.

Example:
\[
\frac{1}{3} + \frac{4}{3} = \frac{5}{3} = 1 \frac{2}{3}
\]

When we add fractions the denominators should be the same.

a. \(\frac{2}{5} + \frac{4}{5} = \)

b. \(\frac{5}{9} + \frac{6}{9} = \)

c. \(\frac{3}{4} - \frac{2}{4} = \)

d. \(\frac{7}{10} + \frac{5}{10} = \)

e. \(\frac{5}{6} + \frac{3}{6} = \)

f. \(\frac{5}{7} + \frac{6}{7} = \)

2. Calculate and simplify if necessary.

Example:
\[
\frac{1}{2} \times \frac{2}{2} + \frac{1}{4} = \frac{3}{4}
\]

Remember when we add fractions the denominators should be the same.
To make the denominators the same we need to find the Lowest Common Multiple (LCM).

a. \(\frac{1}{4} + \frac{1/2} = \)

b. \(\frac{1}{5} + \frac{1/10} = \)

c. \(\frac{1}{3} + \frac{1/6} = \)

d. \(\frac{1}{8} + \frac{1/4} = \)

e. \(\frac{1}{5} + \frac{1/4} = \)

f. \(\frac{1}{2} + \frac{1/3} = \)

3. In your own words write down how you would add:

Fractions with the same denominators.
Fractions with denominators that are multiples of each other.

Problem solving

What is \(\frac{5}{10} + \frac{3}{10}\) in its simplest form?
Multiply unit fractions by unit fractions

1. First add and then multiply the two fractions.

Example: \(\frac{1}{2} \times \frac{1}{3} \)

Addition: \(\frac{1}{2} + \frac{1}{3} = \frac{5}{6} \)

Multiplication: \(\frac{1}{2} \times \frac{1}{3} = \frac{1}{6} \)

<table>
<thead>
<tr>
<th>Example</th>
<th>Addition</th>
<th>Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2} \times \frac{1}{3})</td>
<td>(\frac{1}{2} + \frac{1}{3} = \frac{5}{6})</td>
<td>(\frac{1}{2} \times \frac{1}{3} = \frac{1}{6})</td>
</tr>
</tbody>
</table>

- a. \(\frac{1}{2} \times 12 \)
- b. \(\frac{1}{2} \times 11 \)
- c. \(\frac{1}{3} \times 3 \)
- d. \(\frac{1}{4} \times 5 \)
- e. \(\frac{1}{4} \times 10 \)
- f. \(\frac{1}{5} \times 6 \)

I see that when multiplying proper fractions, the answer gets smaller. The denominator of the answer gets bigger, so it is less than 2 and less than 1.

That is true. Think about it. If I multiply a six pack of juice by 2, then I get twelve juices. But if I take half (\(\frac{1}{2} \)) of a six pack of juice, I get three.

2. Calculate.

Example: \(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} = \frac{1}{24} \)

- a. \(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} = \)
- b. \(\frac{1}{4} \times \frac{1}{5} \times \frac{1}{2} = \)
- c. \(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{4} = \)
- d. \(\frac{1}{3} \times \frac{1}{6} \times \frac{1}{2} = \)
- e. \(\frac{1}{3} \times \frac{1}{5} \times \frac{1}{2} = \)
- f. \(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{9} = \)

Why do you think it is so important to know your times tables?

3. What two fractions, when multiplied together, will give you the answer of \(\frac{1}{32} \)?
What three fractions, when multiplied together, will give you the same answer?

4. What do you notice when you extend this fraction pattern?

\[
\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} \times \frac{1}{6} \times \ldots
\]

Problem solving

Can two unit (or unitary) fractions give you a single unit fraction with a numerator of 1 if you:
- add them together?
- multiply them?
Multiply common fractions by common fractions with the same and different denominators

Look at the fractions and compare the two blocks. What differs between the numbers in the two blocks?

Multiply the numbers of the same colour in each block together. Compare the two sets of calculations.

1. Calculate:

Example 1: \(\frac{6}{7} \times \frac{5}{7} \)

Example 2: \(\frac{6}{7} \times \frac{6}{7} \)

a. \(\frac{1}{3} \times \frac{2}{3} = \)

b. \(\frac{2}{4} \times \frac{1}{4} = \)

c. \(\frac{1}{6} \times \frac{3}{7} = \)

d. \(\frac{1}{2} \times \frac{4}{6} = \)

e. \(\frac{7}{8} \times \frac{2}{4} = \)

f. \(\frac{8}{5} \times \frac{4}{5} = \)

2. Write down two different multiplication sums that will give the fraction shown as the answer. State what kind of fractions you have multiplied together.

Example: \(\frac{3}{5} \times \frac{4}{6} = \frac{12}{18} \)

A whole number \(\times \) a proper fraction = a proper fraction.

A proper fraction \(\times \) an improper fraction

a. \(\frac{3}{3} \times \frac{4}{6} = \frac{12}{18} \)

b. \(\frac{2}{9} \times \frac{6}{2} = \frac{12}{18} \)

c. \(\frac{3}{3} \times \frac{6}{8} = \frac{18}{24} \)

d. \(\frac{12}{18} \times \frac{12}{16} = \frac{144}{288} \)

e. \(\frac{10}{64} \times \frac{9}{12} = \frac{90}{96} \)

3. What is one quarter of a half? Use diagrams to show your calculation.

Problem solving

What two fractions can you multiply to get the answer \(\frac{22}{99} \)?
Multiply whole numbers by common fractions

Look at the following and discuss it with a friend.

8 ÷ 1 = 8

So we can write the whole number 8 as the fraction 8/1.

How would I write the following whole numbers as fractions?

2 78 356 1245 23432 978323

1. Calculate the following:

Example:

\[
8 \times \frac{1}{4} = \frac{8}{4} = \frac{8 \times 4}{4} = \frac{8 + 4}{4} = \frac{12}{4} = 3
\]

a. \(2 \times \frac{3}{5} = \)

b. \(4 \times \frac{5}{6} = \)

c. \(11 \times \frac{3}{10} = \)

d. \(9 \times \frac{1}{2} = \)

e. \(\frac{2}{3} \times 2 = \)

f. \(8 \times \frac{6}{7} = \)

2. What multiplication sums, using a whole number and a fraction, will give you the following answers?

Example:

\[
\frac{2}{3} = 2 \times \frac{1}{3} = \frac{2}{1} \times \frac{1}{3}
\]

a. \(_ \times _ = \frac{4}{6} \)

b. \(_ \times _ = \frac{9}{10} \)

c. \(_ \times _ = \frac{3}{8} \)

d. \(_ \times _ = \frac{15}{50} \)

e. \(_ \times _ = \frac{7}{21} \)

f. \(_ \times _ = \frac{6}{24} \)

3. One fifth of 15 cell phones were sold on a special. What fraction were not sold?

Problem solving

If \(_ \text{ (whole number)} \times _ \text{ fraction} = \frac{8}{12} \), how many possible solutions are there for this multiplication sum?
Multiply common fractions and simplify

1. Simplify the following:

Example: \(\frac{15}{20} \)

\[\frac{15}{20} \div 2 \div 2 \div 3 = \frac{5}{4} \]

a. \(\frac{4}{12} \)

b. \(\frac{8}{16} \)

c. \(\frac{5}{20} \)

d. \(\frac{16}{24} \)

e. \(\frac{7}{21} \)

f. \(\frac{24}{64} \)

2. Multiply and simplify if possible.

Example: \(\frac{1}{3} \times \frac{4}{8} \)

\[\frac{1}{3} \times \frac{4}{8} = \frac{4}{24} = \frac{1}{6} \]

a. \(\frac{1}{2} \times \frac{4}{8} \)

b. \(\frac{7}{7} \times \frac{3}{6} \)

c. \(\frac{8}{10} \times \frac{10}{12} \)

d. \(\frac{1}{3} \times \frac{5}{3} \)

e. \(\frac{1}{2} \times \frac{3}{4} \)

f. \(\frac{1}{2} \times \frac{2}{7} \)

3. Simplify the improper fraction if necessary and then write it as a mixed number.

Example: \(\frac{14}{7} = 3 \frac{1}{2} \)

a. \(\frac{19}{3} \)

b. \(\frac{21}{5} \)

c. \(\frac{20}{6} \)

d. \(\frac{22}{7} \)

e. \(\frac{10}{8} \)

f. \(\frac{21}{9} \)

4. Multiply and simplify.

Example: \(\frac{6}{4} \times \frac{5}{2} \)

\[\frac{6}{4} \times \frac{5}{2} = \frac{30}{8} = \frac{3}{4} \]

a. \(\frac{3}{2} \times \frac{7}{6} \)

b. \(\frac{6}{3} \times \frac{6}{5} \)

c. \(\frac{8}{7} \times \frac{6}{4} \)

d. \(\frac{5}{4} \times \frac{9}{8} \)

e. \(\frac{6}{5} \times \frac{2}{8} \)

f. \(\frac{9}{7} \times \frac{6}{3} \)

Problem solving

a. What is \(\frac{14}{8} \times \frac{3}{2} \) in its simplest form?

b. Multiply any two improper fractions and simplify your answer if necessary.
Solve fraction problems

Complete this conversation about why we should solve problems in mathematics.

Why should I solve problems in mathematics? (It’s a life skill!)

1. Calculate the following. You may need extra paper to do your calculations.

Example 1: One half of an hour
 \[
 \frac{1}{2} \times 60 = \frac{60}{2} = 30 \text{ minutes}
 \]

Example 2: What fraction of one day is six hours?
 \[
 \frac{6}{24} = \frac{6}{24} \times \frac{6}{6} = \frac{1}{4}
 \]

Factors of 6 = \{1, 2, 3, 6\}
Factors of 24 = \{1, 2, 3, 4, 6, 8, 12, 24\}

2. A number of children had R150 to spend. How much of the R150 did they have left?

Example: You have R150. If you spent \(\frac{2}{5} \) of it, how much money would you have left?

\[
\begin{align*}
\text{of R150} &= \frac{2}{5} \times R150 = R150 \times \frac{2}{5} = R30 \\
\text{R150} - \text{R30} &= \text{R120 left.}
\end{align*}
\]

Which word tells you it is a multiplication sum? (of)

a. John spent \(\frac{1}{2} \)

b. Veronica spent \(\frac{1}{6} \)

c. Mary spent \(\frac{1}{10} \)

d. Mandla spent \(\frac{1}{8} \)

e. Susan spent \(\frac{1}{4} \)

f. Gugu spent \(\frac{1}{3} \)

3. You have R120 to spend on clothing. You can get discounts at different stores. Work out how much discount you can get at each.

Example: You bought clothing to the value of R120. You got a discount of \(\frac{3}{10} \) off. How many rands was your discount worth?

\[
\begin{align*}
\frac{3}{10} \times R120 &= R120 \times \frac{3}{10} = R36 \\
\text{R120} - \text{R36} &= \text{R84 left.}
\end{align*}
\]

Which word tells you it is a multiplication sum? (of)

a. \(\frac{1}{2} \)

b. \(\frac{1}{8} \)

c. \(\frac{1}{12} \)

d. \(\frac{1}{4} \)

e. \(\frac{1}{6} \)

f. \(\frac{1}{5} \)
1. Solve these measurement of distance problems.

Example: What is one half of a kilometre?

\[
\frac{1}{2} \text{ of a kilometre} = \frac{1}{2} \times 1000 \text{ mm} = 500 \text{ mm}
\]

2. Solve these travel distance problems. If I completed \(\frac{1}{5} \) of the distance of 500 km, how far do I still have to travel?

Example: I completed one fifth of my 200 km journey. How far do I still need to travel?

\[
\frac{1}{5} \times 200 \text{ km} = 40 \text{ km}
\]

3. My friends and I competed in a cycling race of 120 km. We had to finish the race in eight hours. After five hours, we still needed to travel the remaining quarter of the distance. How far did we still need to go to the finishing line? Did we finish the race in time?

4. Solve: What is \(\frac{1}{4} \) of a kg?

Example: What is a quarter of a kilogram?

\[
\frac{1}{4} \text{ of 1000 g} = \frac{1}{4} \times 1000 g = \frac{1000}{4} g = 250 g
\]

5. Solve: How many grams of the 150 g of food did I eat?

Example: I ate \(\frac{1}{5} \) of my 150 grams of food. How many grams did I eat?

\[
\frac{1}{5} \times 150 \text{ grams} = 30 \text{ grams}
\]

6. Solve: How many millilitres did I drink?

Example: What is two fifths of a litre?

\[
\frac{2}{5} \times \frac{1000}{1} \text{ ml} = \frac{2000}{5} \text{ ml} = 400 \text{ ml}
\]

Problem solving

Write your own word problem on a separate piece of paper using capacity and fractions. Use the previous questions to guide you.
Fractions, decimals and percentages

1. Write the following as a fraction and a decimal fraction:
 - Example: 18% = \(\frac{18}{100} \) or 0.18
 - Simplified form: \(\frac{9}{50} \)
 - a. 37% = \(\frac{37}{100} \) or \(0.37 \)
 - b. 25% = \(\frac{25}{100} \) or 0.25
 - c. 83% = \(\frac{83}{100} \) or 0.83
 - d. 90% = \(\frac{90}{100} \) or 0.90
 - e. 55% = \(\frac{55}{100} \) or 0.55
 - f. 3% = \(\frac{3}{100} \) or 0.03

2. Write the following as a fraction in its simplest form:
 - Percentage | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%
 - Fraction
 - Simplified form

 Describe the pattern.

3. Calculate.
 - Example: 18% of R20
 - \(\frac{18}{100} \times \frac{20}{1} = \frac{360}{100} = \frac{3.60}{1} \)
 - a. 20% of R24
 - b. 70% of R15
 - c. 60% of R95
 - d. 80% of R74
 - e. 30% of R90
 - f. 50% of R65

4. Calculate.
 - Example: 60% of R150
 - \(\frac{60}{100} \times \frac{150}{1} = \frac{9000}{100} \)
 - Simplified form: \(\frac{90}{100} = \frac{9}{10} \)
 - a. 30% of R180
 - b. 80% of R160
 - c. 90% of R810
 - d. 20% of R460
 - e. 60% of R540
 - f. 20% of R640

Problem solving
I bought a pair of shoes for R150. I got 25% discount. How much did I pay for it?
1. Calculate the percentage increase.

Example: Calculate the percentage increase if the price of a bus ticket of R60 is increased to R84.

\[
\frac{24}{60} \times 100 = \frac{240}{60} = 40\%
\]

<table>
<thead>
<tr>
<th>Price increase:</th>
<th>Price increase:</th>
<th>Price increase:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R50 to R70</td>
<td>R80 to R120</td>
<td>R15 to R18</td>
</tr>
</tbody>
</table>

2. Name an item which you really like, the price of which was increased recently. What was the percentage increase?

3. Calculate the percentage decrease.

Example: Calculate the percentage decrease if the price of petrol goes down from 960 cents to 840 cents per litre.

\[
\frac{240}{960} \times 100 = \frac{2400}{960} = 25\%
\]

<table>
<thead>
<tr>
<th>Price decrease:</th>
<th>Price decrease:</th>
<th>Price decrease:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R20 to R15</td>
<td>R50 to R45</td>
<td>R18 to R15</td>
</tr>
</tbody>
</table>

4. What item do you want to be decreased in price? What does it cost? If the price is decreased by 20% what will the new price be?

<table>
<thead>
<tr>
<th>Price decrease:</th>
<th>Price decrease:</th>
<th>Price decrease:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R24 to R18</td>
<td>R90 to R80</td>
<td>R28 to R21</td>
</tr>
</tbody>
</table>

Problem solving

Calculate the percentage decrease if the price of petrol goes down from 960 cents to 840 cents per litre.
Place value, and ordering and comparing decimals

1. Write the following in expanded notation:
 Example: 3,785
 = 3 × 0.7 + 0.08 + 0.005
 a. 4,378
 b. 5,213
 c. 14,678
 d. 5,036
 e. 8,305
 f. 9,006

2. Write the following in words:
 Example: 4,326
 = 4 units + 3 tenths + 2 hundredths + 6 thousandths
 a. 5,376
 b. 8,291
 c. 3,589
 d. 7,036
 e. 8,005

3. Write the following in the correct column:

<table>
<thead>
<tr>
<th></th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
<th>tenths</th>
<th>hundredths</th>
<th>thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>4,765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>18,346</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>19,005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>231.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>7,685.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Write down the value of the underlined digit:
 Example: 3,784
 = 0.08 or 8 hundredths
 a. 6,357
 b. 4,328
 c. 5,809
 d. 8,999
 e. 88,080
 f. 34,002

5. Write the following in ascending order:
 a. 0.04; 0.4; 0.004
 b. 0.1; 0.11; 0.011
 c. 0.99; 0.9; 0.999
 d. 0.753; 0.8; 0.82
 e. 0.67; 0.007; 0.06

6. Fill in <, >, =
 a. 0.4 __ 0.04
 b. 0.05 __ 0.005
 c. 0.1 __ 0.10
 d. 0.62 __ 0.26
 e. 0.58 __ 0.85
 f. 0.37 __ 0.73
 g. 0.123 __ 0.321
 h. 0.2 __ 0.20
 i. 0.4 __ 0.40
 j. 0.05 __ 0.050
Writing common fractions as decimals

Look at the table and explain it.

<table>
<thead>
<tr>
<th></th>
<th>1/10</th>
<th>1/100</th>
<th>1/1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.001</td>
</tr>
</tbody>
</table>

1. Write as a decimal fraction:

Example: \(\frac{5}{100} = 0.05 \)

a. \(\frac{6}{10} \)

b. \(\frac{7}{10} \)

c. \(\frac{8}{1000} \)

d. \(\frac{4}{10} \)

e. \(\frac{5}{1000} \)

f. \(\frac{3}{1000} \)

2. Write as a decimal fraction:

Example: \(\frac{23}{100} = 0.23 \)

a. \(\frac{45}{100} \)

b. \(\frac{76}{100} \)

c. \(\frac{98}{100} \)

d. \(\frac{36}{100} \)

e. \(\frac{476}{100} \)

f. \(\frac{75}{1000} \)

3. Write as a decimal fraction.

Example: \(\frac{45}{10} = 4.5 \)

a. \(\frac{36}{10} \)

b. \(\frac{6705}{100} \)

c. \(\frac{88}{10} \)

d. \(\frac{3200}{100} \)

e. \(\frac{765}{10} \)

f. \(\frac{9347}{100} \)

4. Write as a common fraction.

Example: \(\frac{57}{10} = \frac{57}{10} \)

a. \(9.5 \)

b. \(15.15 \)

c. \(8.934 \)

d. \(3.76 \)

e. \(32.004 \)

f. \(7.6 \)

5. Write the following as a decimal fraction.

Examples: \(\frac{2}{5} = 0.4 \)

\(\frac{1}{25} = 0.04 \)

a. \(\frac{1}{5} \)

b. \(\frac{1}{4} \)

c. \(\frac{1}{2} \)

d. \(\frac{3}{5} \)

e. \(\frac{2}{4} \)

f. \(\frac{7}{25} \)

Problem solving

[You can use a calculator if you want to.]

a. What would you do to change the decimal fraction 7,345 to 7,035?

b. Then to change it to 7,035 and then to 7?

c. If the tenths digit is nine and the units digit is five, what should I do to get an answer of 5.932?
How fast can you count from:

- 0.2 to 1.3
- 1.12 to 1.2
- 1.251 to 1.26

0.2; 0.3; 0.4; _______________________________
1.12; 1.13; 1.14; ___________________________
1.251; 1.252; 1.253; _______________________

1,12 to 1,2

How does this link to decimal fractions: kg, m, ml, cm, etc.?
1,251 to 1,26

1. Complete the number lines.

- a. 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
- b. 0.1, 0.11, 0.12, 0.13, 0.14
- c. 0.01, 0.011, 0.012, 0.013, 0.014

2. Complete the following:

Example: 0.34; 0.35; 0.36; : : : 0.39
= 0.34; 0.35; 0.36; 0.37; 0.38; 0.39

- a. 0.1; 0.2; 0.3; : : : 0.5; 0.6; 0.7; 0.8; 0.9
- b. 0.21; 0.22; 0.23; : : : 0.25; 0.26; 0.27; 0.28; 0.29
- c. 0.31; 0.32; 0.33; : : : 0.36; 0.37; 0.38; 0.39

3. Extend the pattern by five decimal fractions:

Example: 5.36; 5.37; 5.38; ...
= 5.36; 5.37; 5.38; 5.39; 5.4; 5.41; 5.42; 5.43

- a. 7.7; 7.8; 7.9; __________________________
- b. 3.64; 3.65; 3.66; ________________________

4. Round off to the nearest unit.

Example: 7.8
Rounded off to 8

- a. 3.1
- b. 2.8
- c. 5.27
- d. 5.3
- e. 3.9
- f. 6.89

5. Round off to the nearest tenth.

Example: 3.745
Rounded off to 3,7

- a. 6.14
- b. 3.578
- c. 5.63
- d. 68.467
- e. 7.223
- f. 4.32

6. Round off to the nearest unit and tenth.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Tenth</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 3.84</td>
<td></td>
</tr>
<tr>
<td>b. 3.89</td>
<td></td>
</tr>
<tr>
<td>c. 14.27</td>
<td></td>
</tr>
<tr>
<td>d. 999.31</td>
<td></td>
</tr>
<tr>
<td>e. 4.09</td>
<td></td>
</tr>
<tr>
<td>f. 51.781</td>
<td></td>
</tr>
</tbody>
</table>

Problem solving

a. Give five examples of decimal fractions that will be between 0.08 and 0.09.
b. Give five examples of numbers you could have rounded off to 3.
Addition and subtraction with decimal fractions

Look at the following pictures. Make up your own addition and/or subtraction sums.

1. Calculate using both methods. Check your answer.

<table>
<thead>
<tr>
<th>Example 1: 2.37 + 4.53</th>
<th>Example 2: 2.37 + 4.53</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 + 4) + (0.3 + 0.5) + (0.07 + 0.03)</td>
<td>+ 4.53</td>
</tr>
<tr>
<td>= 6 + 0.8 + 0.1</td>
<td>6.90</td>
</tr>
<tr>
<td>= 6.9</td>
<td></td>
</tr>
</tbody>
</table>

a. 3.12 + 4.57 = b. 5.34 + 2.26 =

c. 1.46 + 2.28 = d. 3.45 + 4.67 =

e. 6.58 + 5.78 = f. 9.99 + 9.97 =

2. Calculate using both methods.

<table>
<thead>
<tr>
<th>Example 1: 2.37 + 4.53 – 3.88</th>
<th>Example 2: 2.37 + 4.53 – 3.88</th>
</tr>
</thead>
<tbody>
<tr>
<td>= (2 + 4 - 3) + (0.3 + 0.5 - 0.8) + (0.07 + 0.03 - 0.08)</td>
<td>+ 4.53</td>
</tr>
<tr>
<td>= 3 + 0 + 0.02</td>
<td>6.9</td>
</tr>
<tr>
<td>= 3.02</td>
<td></td>
</tr>
</tbody>
</table>

a. 1.15 + 2.21 – 1.21 = b. 2.34 + 3.42 – 2.34 =

c. 3.24 + 3.35 – 5.36 = d. 4.76 + 6.11 – 3.52 =

e. 2.36 + 5.42 – 3.47 = f. 6.89 + 9.10 – 5.19 =

3. Make five different number sentences using the following decimals. Solve them.
2.56; 1.99 and 3.47. Calculate the answers.

| Example 1: 2.37 + 4.53 – 3.88 |
|-----------------------------|-----------------------------|
| (2 + 4 - 3) + (0.3 + 0.5 - 0.8) + (0.07 + 0.03 - 0.08) | + 4.53 |
| = 3 + 0 + 0.02 | 6.9 |
| = 3.02 | |

Problem solving

My friend went on a diet and lost 2.5 kg the first week, and 1.25 kg the second week. He gained 0.75 kg the third week and lost 0.5 kg the fourth week. How much did he lose in the four weeks? (Remember it is not healthy to lose too much weight in a short period of time.)
Multiplication of decimal fractions

Look at the following pictures. Make up your own addition, subtraction and multiplication sum for each.

- (Picture of stones)
- (Picture of sugar)

Problem solving

Multiply the number that is exactly between 1.15 and 1.16 by the number that is equal to ten times three.

- Multiply the number that is exactly between 1.15 and 1.16 by the number that is equal to ten times three.

Question 1

1. Calculate. (Check your answers using a calculator.)
 - Example: $0.2 \times 0.3 = 0.06$
 - $0.02 \times 0.3 = 0.006$
 - $0.02 \times 0.03 = 0.0006$

 a. $0.4 \times 0.2 = \underline{0.08}$
 b. $0.3 \times 0.1 = \underline{0.03}$
 c. $0.4 \times 0.5 = \underline{0.2}$
 d. $0.6 \times 0.7 = \underline{0.42}$
 e. $0.04 \times 0.02 = \underline{0.0008}$
 f. $0.05 \times 0.1 = \underline{0.005}$

2. Calculate. (Check your answers using a calculator.)
 - Example 1: $0.2 \times 4 = 0.8$
 - Example 2: $0.02 \times 4 = 0.08$
 - Example 3: $0.4 \times 3 = 1.2$

 a. $0.5 \times 3 = \underline{1.5}$
 b. $0.8 \times 3 = \underline{2.4}$
 c. $0.6 \times 4 = \underline{2.4}$
 d. $0.02 \times 9 = \underline{0.18}$
 e. $0.07 \times 6 = \underline{0.42}$
 f. $0.003 \times 8 = \underline{0.024}$

3. Calculate. (Check your answers using a calculator.)
 - Example 1: $0.3 \times 0.2 \times 100 = 0.06 \times 100 = 6$
 - Example 2: $0.3 \times 0.2 \times 10 = 0.06 \times 10 = 0.6$

 a. $0.4 \times 0.2 \times 10 = \underline{0.8}$
 b. $0.5 \times 0.02 \times 10 = \underline{0.01}$
 c. $0.3 \times 0.3 \times 100 = \underline{0.9}$

4. Calculate. (Check your answers using a calculator.)
 - Example: 5.276×30
 \[= (5 \times 30) + (0.2 \times 30) + (0.07 \times 30) + (0.006 \times 30)\]
 \[= 150 + 6 + 2.1 + 0.18\]
 \[= 150 + 6 + 2.1 + 0.1 + 0.08\]
 \[= 158 + 0.2 + 0.08\]
 \[= 158.28\]

 a. $1.123 \times 10 = \underline{11.23}$
 b. $4.886 \times 30 = \underline{146.58}$
 c. $2.932 \times 40 = \underline{117.28}$
 d. $7.457 \times 60 = \underline{447.42}$
 e. $8.234 \times 20 = \underline{164.68}$
 f. $6.568 \times 80 = \underline{525.44}$

 g. Take your answers from a to f and write them down in ascending order.

5. Now redo the problem in question 4 using the column method to do all the multiplications. Use a separate sheet of paper.
Look at the following two patterns and describe them.

| 800 ÷ 4 = 200 | 80 ÷ 4 = 20 | 8 ÷ 4 = 2 | 0,8 ÷ 4 = 0,2 | 0,08 ÷ 4 = 0,02 |
| 150 ÷ 3 = 50 | 15 ÷ 3 = 5 | 1,5 ÷ 3 = 0,5 | 0,15 ÷ 3 = 0,05 | 0,015 ÷ 3 = 0,005 |

Explain to a friend what rounding off to the nearest whole number or to a tenth means if you work with decimals.

1. Calculate the following:

 Example: 0,4 ÷ 2
 \[\frac{0,4}{2} = 0,2 \]
 0,2 rounded off to the nearest whole number is 0.

 a. 0,8 ÷ 4 =
 b. 0,6 ÷ 3 =
 c. 0,6 ÷ 2 =
 d. 0,8 ÷ 2 =
 e. 1,8 ÷ 3 =
 f. 2,4 ÷ 8 =

2. Now round off your answers to question 1 to the nearest whole number.

 a.
 b.
 c.
 d.
 e.
 f.

3. Calculate the following:

 Example: 0,25 ÷ 5
 \[\frac{0,25}{5} = 0,05 \]
 0,05 rounded off to the nearest tenth is 0,1.

 a. 0,81 ÷ 9 =
 b. 0,35 ÷ 7 =
 c. 0,63 ÷ 7 =
 d. 0,54 ÷ 6 =
 e. 0,12 ÷ 4 =
 f. 0,85 ÷ 5 =

4. Now round off your answers to question 3 to the nearest tenth.

 a.
 b.
 c.
 d.
 e.
 f.

5. Complete these flow diagrams. Round off to the nearest whole number.

 a. R0,50
 b. 2 m
 c. 5,4 kg
 d. R3,75
 e. 2,5 ℓ
 f. 1,44 kg

 a. Divide by 2
 b. Divide by 8
 c. Divide by 9
 d. Divide by 25
 e. Divide by 5
 f. Divide by 12

 Round off to the nearest rand
 Round off to the nearest metre
 Round off to the nearest kilogram
 Round off to the nearest rand
 Round off to the nearest litre
 Round off to the nearest kilogram

Problem solving

- You need seven equal pieces from 28,7 m of rope. How long will each piece be?
- I have R45,75. I have to divide it by five. What will my answer be?
- My mother bought 12,8 m of string. She has to divide it into four pieces. How long will each piece be?
1. How fast can you complete the flow diagrams?

a. Input Rule Output

b. Input Rule Output
d.
e. f.

c.

2. Use the given rule to calculate the value of b.

Example:

\[b = a \times 4 \]

\[\cdot 3 \times 4 = 12 \]

\[\cdot 2 \times 4 = 8 \]

\[\cdot 7 \times 4 = 28 \]

\[\cdot 4 \times 4 = 16 \]

3. Prepare to present any flow diagram done in this lesson in a future lesson period.

Draw a flow diagram where \(a = b + 7 \).
Let us look at Input and Output again. What do you think this is?

1. Complete the spider diagrams. Show all your calculations.

Example:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
</tr>
</tbody>
</table>

- \(b = a \times 2 + 3 \) is the rule

2. Prepare a flow diagram to present to the class. Change the flow diagram to an “Input” and “output” device.

Example:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

- \(b = a \times 2 + 3 \) is the rule

3. Draw your own flow diagram where \(a = b \times 2 + 11 \).
Complete the following:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
</tr>
</tbody>
</table>

The rule: \(b = a \times 2 + 3 \)

- \(4 \times 2 + 3 = 11 \)
- \(6 \times 2 + 3 = 15 \)
- \(7 \times 2 + 3 = 17 \)
- \(8 \times 2 + 3 = 19 \)
- \(9 \times 2 + 3 = 21 \)

1. Complete the tables and show your calculations.

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- \(y = x + 2 \)
- \(b = a + 7 \)
- \(n = m + 4 \)
- \(d. z = x \times 2 \)
- \(e. y = 2x - 1 \)
- \(f. n = 3m + 2 \)

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

2. Prepare a similar table to share with the class.

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

If \(z = 2y + 4 \) and \(y = 2, 3, 4, 5, 6 \), draw a table to show it.
51

Input and output values

I got these notes from two of my friends. Compare them.

1. Determine the rule and solve \(m \) and \(n \).

Example:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>(m)</td>
<td>25</td>
<td>39</td>
<td>(n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Determine the rule:
\(y = x + 7 \)

\(m \)?
\(n \)?

a.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>60</td>
</tr>
<tr>
<td>(m)</td>
<td>25</td>
<td>39</td>
<td>(n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule:

b.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>(m)</td>
<td>30</td>
<td>60</td>
<td>(n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule:

c.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>10</th>
<th>15</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>50</td>
<td>(n)</td>
<td>90</td>
</tr>
<tr>
<td>(m)</td>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule:

d.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>7</th>
<th>19</th>
<th>24</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule:

e.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>10</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>(n)</td>
<td>60</td>
</tr>
<tr>
<td>(m)</td>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule:

f.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(m)</th>
<th>41</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>(n)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule:

Problem solving

What is the 10th pattern for \(3 \times 4; 4 \times 4; 5 \times 4; \ldots \)?
Perimeter and area

Look at the pictures and say what the perimeters are. What will the area of each shape be? You can use a calculator.

- **3. If the area is ______, what could the perimeter be?**
 - a. 36 cm²
 - b. 12 cm²
 - c. 100 cm²
 - d. 125 cm²
 - e. 30 cm²
 - f. 18 cm²

- **4. Measure the perimeter and calculate the area of each shape. Give your answer in mm and cm.**

 - a. 36 cm²
 - b. 12 cm²
 - c. 100 cm²
 - d. 125 cm²
 - e. 30 cm²
 - f. 18 cm²

Example: Perimeter

- Perimeter of a rectangle: \(2 \times \text{length} + 2 \times \text{breadth}\)
- Area of a rectangle: \(\text{length} \times \text{breadth}\)

 - Double 4.5 cm + double 2.2 cm
 - \((2 \times 4.5 \text{ cm}) + (2 \times 2.2 \text{ cm})\)
 - = 9 cm + 4.4 cm
 - = 13.4 cm

Example: Area

- Area of a square: \(4 \times \text{ length}\)
- Area of a square: \(\text{ length} \times \text{ length}\)

 - 4.5 cm \(\times\) 2.2 cm
 - = 9.9 cm²

Problem solving

- a. Draw a square and a rectangle each of which has a perimeter of 9 cm.
- b. If the perimeter of a square is 22 cm, what is the length of each side?
- c. What is the perimeter of a regular octagon if the length of each side is 17 cm?
- d. What is the perimeter of a square if its area is 225 cm²?

USE EXTRA PAPER FOR YOUR DRAWINGS
Area of triangles

1. What is the area of these triangles? Use both methods to solve this.

Example:

- **a.**
 - **Method 1:**
 - The triangle is half of the square.
 - Area: \(\frac{1}{2} \times 4 \text{ cm}^2 \)
 - Area: \(2 \text{ cm}^2 \)
 - **Method 2:**
 - Area: \(\frac{1}{2} \times 4 \text{ cm} \times 2 \text{ cm} \)
 - Area: \(2 \text{ cm}^2 \)

- **b.**
 - **Method 1:**
 - Area: \(\frac{1}{2} \times 3 \text{ cm} \times 5 \text{ cm} \)
 - Area: \(7.5 \text{ cm}^2 \)
 - **Method 2:**
 - Area: \(\frac{1}{2} \times 3 \text{ cm} \times 2 \text{ cm} \)
 - Area: \(3 \text{ cm}^2 \)

2. What is the area of the triangles?

The area of a triangle is: \(\frac{1}{2} \times \text{base} \times \text{height} \)

Example:

- **a.**
 - Area: \(\frac{1}{2} \times 3 \text{ cm} \times 5 \text{ cm} \)
 - Area: \(7.5 \text{ cm}^2 \)

- **b.**
 - Area: \(\frac{1}{2} \times 2.5 \text{ cm} \times 4 \text{ cm} \)
 - Area: \(5 \text{ cm}^2 \)

- **c.**
 - Area: \(\frac{1}{2} \times 6 \text{ cm} \times 5 \text{ cm} \)
 - Area: \(15 \text{ cm}^2 \)

- **d.**
 - Area: \(\frac{1}{2} \times 8 \text{ cm} \times 4 \text{ cm} \)
 - Area: \(16 \text{ cm}^2 \)

Problem solving

What is the area of a triangle if the base is 8 cm and the height is 3 cm?
1. Draw a perpendicular line showing the height of the triangle.
 a. Height 2 cm
 b. Height 2,1 cm
 c. Height 2,5 cm

2. Calculate the area of the triangles.
 a. Height 2 cm
 b. Height 3,5 cm
 c. Height 2,5 cm
 d. Height 4,2 cm
 e. Height 4,4 cm

3. Draw a triangle with the given measurements and then calculate the area.
 a. Height 2 cm Base 6 cm
 b. Height 3,5 cm Base 10 cm
 c. Height 2,5 cm Base 8 cm

4. Measure and calculate the area. Give your answer in cm² and mm².
 a.
 b.
 c.

5. Perpendicular lines are lines that are at right angles (90°) to each other.

Problem solving
What is the area of a triangle if the base equals 3,5 cm and the height equals 1,5 cm?
Area conversion

Convert the following:

<table>
<thead>
<tr>
<th>Revision</th>
<th>How did we get these answers?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000 mm = ___ cm</td>
<td>1 cm = 10 mm</td>
</tr>
<tr>
<td>___ cm = 1 m</td>
<td>1 m = 1000 mm</td>
</tr>
<tr>
<td>___ m = 1 km</td>
<td>km = 1 000 000 m²</td>
</tr>
<tr>
<td>cm² = 100 mm²</td>
<td>m² = 1 000 000 mm²</td>
</tr>
<tr>
<td>km² = 1 000 000 m²</td>
<td></td>
</tr>
</tbody>
</table>

1. Work out the area and give your answer in m², cm² and mm².

 Example: Length = 2 m, breadth = 1 m

 \[l \times b = 2 \text{ m} \times 1 \text{ m} \]

 \[= 2 \text{ m}^2 \]

 \[= 200 \text{ cm} \times 100 \text{ cm} \]

 \[= 20000 \text{ cm}^2 \]

 \[= 20000 \text{ mm} \times 1000 \text{ mm} \]

 \[= 20000000 \text{ mm}^2 \]

 Possible drawing

 - Length = 5 m, breadth = 3 m

 \[m^2 \text{ } cm^2 \text{ } mm^2 \]

 \[5 \text{ m} \text{ } 3 \text{ m} \]

 - Length = 3 m, breadth = 1.5 m

 - Length = 6 m, breadth = 3.2 m

 - Length = 4.5 m, breadth = 2.1 m

 - Length = 7.2 m, breadth = 5 m

 Problem solving

 If the base of a triangle is 4 m and the height 3 m, calculate the area and give your answer in m², cm² and mm².

 Example: If the area is 9 000 000 mm², what is the length and breadth in cm and m?

 Possible answer:

 \[= 6000 \text{ mm} \times 1500 \text{ mm} \]

 \[= 600 \text{ cm} \times 150 \text{ cm} \]

 \[= 6 \text{ m} \times 1.5 \text{ m} \]

 length = 600 cm = 6 m

 breadth = 150 cm = 1.5 m

2. Given the area of a rectangle, find a possible length and breadth in cm and m. You may want to draw sketches on a separate piece of paper.

 Example:

 a. 15 000 000 mm²
 b. 63 000 000 mm²
 c. 27 000 000 mm²

 Possible drawing

 - Calculation:

 \[= 6000 \text{ mm} \times 1500 \text{ mm} \]

 \[= 600 \text{ cm} \times 150 \text{ cm} \]

 \[= 6 \text{ m} \times 1.5 \text{ m} \]

 length = 600 cm = 6 m

 breadth = 150 cm = 1.5 m

 d. 28 000 000 mm²
 e. 36 000 000 mm²
 f. 16 000 000 mm²
Understanding the volume of cubes

1. Label the diagram. Count the cubes. Write the number of cubes in exponential form.

 Example:

 \[
 2 \times 2 \times 2 = 2^3 = 8 \text{ m}^3
 \]

2. Write down a sum in exponential form for each diagram and then calculate the total number of blocks used.

 Example:

 \[
 2^3 \text{ blocks} + 5^3 \text{ blocks} = 8 \text{ blocks} + 125 \text{ blocks} = 133 \text{ blocks}
 \]

3. Calculate the volume of the buildings. Show your calculations.

 a. 2 cm × 2 cm × 2 cm
 b. 4 cm × 4 cm × 4 cm
 c. 5 cm × 5 cm × 5 cm
 d. 3 cm × 3 cm × 3 cm
 e. 1 cm × 1 cm × 1 cm
 f. 7 cm × 7 cm × 7 cm

4. Make a drawing and calculate the following:

 a. 2 cm × 2 cm × 2 cm
 b. 4 cm × 4 cm × 4 cm
 c. 5 cm × 5 cm × 5 cm
 d. 3 cm × 3 cm × 3 cm
 e. 1 cm × 1 cm × 1 cm
 f. 7 cm × 7 cm × 7 cm

Problem solving

If a block has 1,728 cubic units, what will its dimensions be?
Volume of cubes

What is the difference between volume and capacity?

- **Volume** of a solid is the amount of space it occupies.
- **Capacity** is the amount of space, a liquid, or other substance, a container can hold.

1. Use a formula to calculate the volume of water that will fill each cube.
 Example:
 The formula for the volume of a cube is \(\ell^3 \).

 \[
 2 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm} = 8 \text{ cm}^3 = 8 \text{ ml} = 0.008 \ell
 \]

 a. 3 cm
 b. 5 cm
 c. 4 cm

2. What will the dimensions of a cube be if its volume is ___?
 Example:

 \[8 \text{ cm}^3 = 2 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}\]

 a. 27 cm³
 b. 64 cm³
 c. 125 cm³

3. Use the example to guide you in completing the volume calculations for these cubes:
 Example:

 \[
 2 \text{ m} \times 2 \text{ m} \times 2 \text{ m} = 8 \text{ m}^3
 \]

 a. 4 m
 b. 3 m

 \[
 200 \text{ cm} \times 200 \text{ cm} \times 200 \text{ cm} = 8 \text{ 000 000 cm}^3
 \]

 a. 200 cm
 b. 3 m

 \[
 2 \text{ 000 mm} \times 2 \text{ 000 mm} \times 2 \text{ 000 mm} = 8 \text{ 000 000 000 mm}^3
 \]

 a. 2000 mm
 b. 3 m

 d. 1 cm³
 e. 216 cm³
4. Look at the example showing how to calculate the dimensions of a cube with a particular volume. Re-write all the volumes below showing the dimensions of the cubes in mm, cm and m.

Example:
- $8 000 000 000 mm^3 = 2 000 mm \times 2 000 mm \times 2 000 mm$
- $8 000 000 cm^3 = 200 cm \times 200 cm \times 200 cm$
- $8 m^3 = 2 m \times 2 m \times 2 m$

a. $216 m^3$

b. $343 000 000 000 000 mm^3$

c. $512 000 000 cm^3$

d. $125 000 000 000 mm^3$

Problem solving

a. If the volume of a cube is $125 cm^3$, what are its dimensions in mm and m?

b. With a family member think of five everyday objects that are cubes.
Volume of rectangular prisms

1. Write a multiplication sum to calculate the number of cubes making up each rectangular object.

Example:

\[4 \times 2 \times 2 = 16 \text{ cubes} \]

2. Write multiplication sums to calculate the number of cubes in each pair of rectangular objects.

Example:

\[(4 \times 1 \times 2) + (10 \times 5 \times 5) \\
= 8 + 250 \\
= 258 \text{ cubes} \]

3. Calculate the volume of each of these buildings. Show your calculations.

4. Calculate the volume of rectangular prisms with the following dimensions and make a drawing of each rectangular prism showing the dimensions:

- a. \(3 \text{ cm} \times 2 \text{ cm} \times 1 \text{ cm}\)
- b. \(4 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}\)
- c. \(5 \text{ cm} \times 4 \text{ cm} \times 3 \text{ cm}\)
- d. \(4 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}\)

Problem solving

If a rectangular prism has 384 cubic units, what will its dimensions be?
1. Calculate the volume of the following and give your answer in m^3, cm^3, and mm^3.

Also say what the capacity of each container is when filled with water.

Example:

- Calculate the volume of the following and give your answer in m^3, cm^3, and mm^3.
- Also say what the capacity of each container is when filled with water.

Example:

- $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$

This container will hold 30 000 000 mL or 30 000 L of water.

- This container will hold 8 000 litres.

- This container will hold 30 000 000 mL or 30 000 L of water.

- This container will hold 8 000 litres.

- Work out that $10cm \times 10cm \times 10cm = 1000cm^3 = 1L$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.

- Work out that $3m \times 3m \times 3m = 27m^3 = 27000000cm^3 = 27000000000mm^3$.
Volume problems

1. Calculate the volume (in cubic centimetres) of a rectangular prism that is 5 m long, 40 cm wide and 2 500 mm high. Make a drawing.

2. A swimming pool is 8 m long, 6 m wide and 1.5 m deep.
 The water resistant paint needed for the pool costs R50 per square metre.
 a. How much will it cost to paint the interior surfaces of the pool?

 b. How many litres of water will be needed to fill the pool?

3. At a factory they are trying to store boxes in a storage room with a length of 5 m, width of 3 m and height of 2 m. How many boxes can fit in this space if each box is 10 cm long, 6 cm wide and 4 cm high?

Problem solving

Solve this with a family member or members.
- Assume we each create a cube of 30 cm × 30 cm × 30 cm of waste per day.
- We have a classroom with dimensions of 5.1m × 4.5m × 3 m.
- We are 30 children in the class.

How long will we take to fill the class with waste?

Imagine our waste didn’t go to the landfills but to school classrooms.
Do you know that we will then fill all 28 000 school classrooms in South Africa about 6 times a year with waste.
Volume and capacity

This person needs to collect information. What do you notice?

1. Show that the following statements are true:
 - \(1 \text{ cm}^3 = 1 \text{ millilitre} \)
 - \(1 \text{ 000 cm}^3 = 1 \text{ litre} \)
 - \(1 \text{ m}^3 = 1 \text{ 000 litre} \)

A possible way to look for the solution to this problem.

Start — What is the actual problem?

Ask yourself the following questions:

What do I know?

- What are millilitres and litres?
- What is \(\text{cm}^3 \)?
- What is \(\text{m}^3 \)?
- What examples do I know?

What do I need to prove?

- \(\text{cm}^3 = 1 \text{ millilitre} \)
- \(1 \text{ 000 cm}^3 = 1 \text{ litre} \)
- \(1 \text{ m}^3 = 1 \text{ 000 litre} \)

What do I need to know?

Possibly:

- What is volume?
- What is capacity?

Note that sometimes we think of something later on; we don't always think of everything at the beginning. Add anything else.

2. Attack the problem.

Write down everything you know to prove that the statements are true. Show patterns and relationships. Make a sensible guess or conjecture and then see if you can prove it.

3. Come to a conclusion that is convincing.

Share this process step by step with a friend or a family member.
Surface Area of a Cube

What do you see?

![Cube Diagram](image)

1. Revision: Calculate the volume of these cubes.

<table>
<thead>
<tr>
<th>cm</th>
<th>cm³</th>
<th>mm³</th>
<th>Make a drawing of the net. Describe in words the geometric figures (2-D shapes) in the net.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>4 cm × 4 cm × 4 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>2.5 cm × 2.5 cm × 2.5 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem solving

If a cube’s surface area is 150 cm², what will the dimensions of the cube be?

Example:

The surface area of a cube is length × length × total number of faces.

- \(= l^2 \times \text{total faces} \)
- \(= (4\text{cm})^2 \times 6 \)
- \(= 16\text{ cm}^2 \times 6 \)
- \(= 96\text{ cm}^2 \)

3. You want to make a gift box in the shape of a cube. The gift is 15 cm high and 9 cm wide. How much cardboard do you need to make a cube gift box.
1. Revision: Calculate the volume of these rectangular prisms.

<table>
<thead>
<tr>
<th>cm</th>
<th>cm³</th>
<th>mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 3 cm × 2 cm × 1 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 3 cm × 2.5 cm × 1.5 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Make a drawing of the net. Describe in words the geometric figures (2-d shapes) in the net.

2. Calculate the surface area of the following rectangular prisms:

- **Surface area of a rectangular prism**

 \[\text{Surface area} = 2 \times (\text{Length} \times \text{Width}) + 2 \times (\text{Length} \times \text{Height}) + 2 \times (\text{Width} \times \text{Height}) \]

<table>
<thead>
<tr>
<th>Surface area of rectangular prism</th>
<th>2 cm × 5 cm × 3 cm = 30 cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of this rectangle:</td>
<td>4 cm × 2.5 cm = 10 cm²</td>
</tr>
<tr>
<td>2 × 10 cm² = 20 cm²</td>
<td>4 cm × 3 cm = 12 cm²</td>
</tr>
<tr>
<td>2 × 12 cm² = 24 cm²</td>
<td>2.5 cm × 3 cm = 7.5 cm²</td>
</tr>
<tr>
<td>20 cm² + 24 cm² + 15 cm²</td>
<td>2 × 7.5 cm² = 15 cm²</td>
</tr>
<tr>
<td>= 59 cm²</td>
<td>20 cm² + 24 cm² + 15 cm² = 59 cm²</td>
</tr>
</tbody>
</table>

Problem solving

If the surface area of a rectangular prism is 52 cm², what could its dimensions be?
Before solving the problems, make notes on how you will solve a problem.

Revise the formulas for surface area.
Write them down.

Cube: __________
Rectangular prism: __________

1. How many square tiles (20 cm × 20 cm) are needed to cover the sides and base of a pool that is 10 m long, 6 m wide and 3 m deep?

What is this problem all about?
What do I know?
What do I need to know more about?

2. Four cubes of ice with side lengths of 4 cm each are left to melt in a square box with sides 8 cm long. How high will the water rise when all of them have melted?

What is this problem all about?
What do I know?
What do I need to know more about?

To calculate the area of a square, I need to know:
Area = length × width (l × w)

To calculate the volume, I need to know:
Area of the base of the box = l × w
Height: h
Volume = Area × Height (l × w × h)

Tackle the problem: