
The Constitution of South Africa (1996) is the highest law in the country. This law is higher than the President, higher than the courts and higher than the government. It describes how the people of our country should treat each other, and what their rights and responsibilities are. The constitution of a country is there to protect all of us now, and our children in the future.

Be aware of our past.

Let us not repeat the mistakes of past.

Our Constitution helps us to imagine and build a better future for all.

We, the people of South Africa;

Recognise the injustices of our past;

Respect those who have worked to build and develop our country; and

Believe that South Africa belongs to all who live in it, united in our diversity.

We therefore, through our freely elected representatives, adopt this Constitution as law of the Republic so as to —

Heal the division of the past and establish a society based on democratic values, social justice and fundamental human rights;

Lay the foundations for a democratic and open society in which government is based on the will of the people and every citizen is equally protected by law;

Improve the quality of life of all citizens and free the potential of each person; and

Build a united and democratic South Africa able to take its rightful place as a Sovereign state in the family of nations.

Claim your rights as a South African and be responsible to protect the rights of others.

Know your Bill of rights & Bill of Responsibilities.

May God protect our people.

Nkosi Sikelel' iAfrika. Morena boloka setjhaba sa heso.

God seën Suid-Afrika. God bless South Africa.

Mudzimu fhatutshedza Afurika. Hosi katekisa Afrika.
Contents

<table>
<thead>
<tr>
<th>No</th>
<th>Worksheet</th>
<th>Topic</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Numbers 500 to 600</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>More numbers 500 to 600</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Numbers 600 to 700</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Map work</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>More numbers 600 to 700</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Numbers 650 to 750</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Numbers 700 to 750</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>2-D shapes</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Addition and subtraction to 800</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>More addition and subtraction to 800</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Addition and subtraction to 800 again</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Number patterns: time to 800</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Round off to time</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Multiplication: times up to 75</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Number patterns: times to 800</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Day time and night time</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Multiplication: times up to 75</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Number patterns: times up to 800</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Multiplication: 2s and 3s up to 75</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Multiplication: 2s, 3s and 4s up to 75</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Number patterns: times to 800</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Round off to the nearest 10</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Multiplication and division: times up to 75</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Number patterns: times to 800</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Multiplication and division: 2s, 3s, 4s and 5s up to 75</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Properties of 3D objects</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Fraction strip kits</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>More Fractions</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Sharing leading to fractions</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>The distance around</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>95a</td>
<td>Trading money</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>95b</td>
<td>Let’s go shopping</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>More about data</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Working in centimetres</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Numbers 700 to 800</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>More numbers 700 to 800</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Numbers 800 to 900</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>More numbers 800 to 900</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>102a</td>
<td>Let’s weigh things</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>102b</td>
<td>Let’s weigh some more</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Worksheet</th>
<th>Topic</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>Numbers 900 to 1 000</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>More numbers 900 to 1 000</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Addition and subtraction to 999</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>About the house</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Working with money</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>More addition and subtraction to 999</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Addition and subtraction to 999 again</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Measurement puzzles</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Number patterns: times to 800</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Round off to the nearest 10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Multiplication and division: times up to 100</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Number patterns: times up to 1 000</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>More about symmetry</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Number patterns: times up to 900</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Multiplication and division: times up to 100</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Multiplication and division: times up to 100</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Number patterns: times to 800</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Multiplication and division: times up to 100</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>More numbers 900 to 1 000</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Equal parts of a whole</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Fraction problems</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>3-D objects</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>More Fractions</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>More grouping and sharing</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Tangram triangles</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>128a</td>
<td>Measuring capacity</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>128b</td>
<td>Measure and pour</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-out 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-out 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-out 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-out 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-out 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-out 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mrs Angie Motshekga, Minister of Basic Education

Dr Reginah Mhaule, Deputy Minister of Basic Education

These workbooks have been developed for the children of South Africa under the leadership of the Minister of Basic Education, Mrs Angie Motshekga, and the Deputy Minister of Basic Education, Dr Reginah Mhaule.

The Rainbow Workbooks form part of the Department of Basic Education’s range of interventions aimed at improving the performance of South African learners in the first six grades. As one of the priorities of the Government’s Plan of Action, this project has been made possible by the generous funding of the National Treasury. This has enabled the Department to make these workbooks, in all the official languages, available at no cost.

We hope that teachers will find these workbooks useful in their everyday teaching and in ensuring that their learners cover the curriculum. We have taken care to guide the teacher through each of the activities by the inclusion of icons that indicate what it is that the learner should do.

We sincerely hope that children will enjoy working through the book as they grow and learn, and that you, the teacher, will share their pleasure.

We wish you and your learners every success in using these workbooks.
Numbers 500 to 600

Count and write.

a. Use the following chart to help you count from 500 to 600. Say the numbers out aloud as you count.

<table>
<thead>
<tr>
<th>501</th>
<th>504</th>
<th></th>
<th></th>
<th>510</th>
</tr>
</thead>
<tbody>
<tr>
<td>522</td>
<td></td>
<td></td>
<td>518</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td></td>
<td>536</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td>573</td>
<td></td>
<td>558</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>595</td>
<td>600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Write the missing numbers in the grid above.

c. Write the 10 numbers that come after 500.

500; ____; ____; ____; ____; ____; ____; ____; ____; ____;

d. Write the next 8 numbers in the 2s pattern.

510; 512; ____; ____; ____; ____; ____; ____;

e. Write all the numbers in the 2s pattern from 548 to 570.

548; ____; ____; ____; ____; ____; ____; 570;

f. Write the next 8 numbers in the 5s pattern.

515; 520; ____; ____; ____; ____; ____; ____;
How many blocks can you count?

How did you count the blocks?

Complete the number lines.

Complete the table. Write from smallest to biggest. Write from biggest to smallest.

Write the following in words.

520
More numbers 500 to 600

The teacher asks Peter to show 537 with his cards and blocks. This is what Aakar showed. What did he do wrong?

Peter has the following place value cards and base ten blocks.

Write a number sentence and then the answer.

500 + 10 + 7 = 517

Write a number sentence and then the answer.

500 + 70 + 3 =

500 + 90 =

90 + 1 =

More numbers 500 to 600
Complete the number line.

Write all the numbers smaller than 556. ___________________________________
Write all the numbers bigger than 556. ___________________________________

Break up your number.
a. Build each number with your cards.
b. Write the value for each digit.

<table>
<thead>
<tr>
<th>495</th>
<th>508</th>
<th>594</th>
<th>549</th>
<th>602</th>
</tr>
</thead>
</table>

Example: 517

\[517 = 500 + 10 + 7 \]

Write the number names.

<table>
<thead>
<tr>
<th>221</th>
<th>486</th>
<th>369</th>
<th>419</th>
<th>491</th>
</tr>
</thead>
</table>

There are ten digits.
0123456789
We put them together to make numbers.
Numbers 600 to 700

Count and write.

a. Use the following chart to help you count from 600 to 700. Say the numbers out aloud as you count.

<table>
<thead>
<tr>
<th>601</th>
<th>604</th>
<th>610</th>
</tr>
</thead>
<tbody>
<tr>
<td>622</td>
<td></td>
<td>618</td>
</tr>
<tr>
<td>636</td>
<td></td>
<td>649</td>
</tr>
<tr>
<td>641</td>
<td></td>
<td>658</td>
</tr>
<tr>
<td></td>
<td>673</td>
<td></td>
</tr>
<tr>
<td>692</td>
<td>695</td>
<td>700</td>
</tr>
</tbody>
</table>

b. Write the missing numbers in the grid above.

c. Write the 10 numbers that come after 600.

600; __; __; __; __; __; __; __; __; __; __

d. Write the next 8 numbers in the 2s pattern.

622; 624; 626; __; __; __; __; __; __; __; __

e. Write all the numbers in 2s pattern from 611 to 633.

611; __; __; __; __; __; __; __; __; 633

f. Write the next 8 numbers in the 5s pattern.

645; 650; 655; __; __; __; __; __; __; __; __;
How many blocks do you count?

How did you count the blocks?

Complete the number lines.

Complete the table. Write from smallest to biggest Write from biggest to smallest

Write the following in words.

631
Map work

Look at the picture.
- What is it?
- For what do we use it?
- What can we find on a map?

Draw the following on the map:
library, school, clinic, hospital, police station, shopping centre.
You can add some extra streets.
Use the map on the previous page to give your friends directions from:

a. the clinic to the police station.

b. the school to the clinic.

c. the school to the shopping centre.

d. the shopping centre to the library.

e. the library to the school.

f. the hospital to the school.
Write a number sentence and then the answer.

$$\begin{align*}
600 + 30 + 7 &= 637 \\
600 + 90 + 8 &= 698 \\
600 + 70 &= 670 \\
600 + 50 + 8 &= 658
\end{align*}$$
Complete the number line.

| 670 | 671 | 672 | 673 | 675 | 677 | 679 | 680 |

Write all the numbers smaller than 675. ______________________________
Write all the numbers bigger than 675. ______________________________

Fill in < or > or =

a. 670 _____ 607
b. 688 _____ 699
c. 600 + 50 + 5 _____ 655

Break up the number.

a. Build each number with your cards.
b. Write the value for each digit. Now do these: Break up your number.

| 686 | 690 | 699 | 673 | 665 |

Write the number names.

| 672 | 693 | 607 | 697 | 660 |
Count and write.

a. Use the following chart to help you count from 650 to 750. Say the numbers out aloud as you count.

<table>
<thead>
<tr>
<th>650</th>
<th>651</th>
<th>652</th>
<th>653</th>
<th>654</th>
<th>655</th>
<th>656</th>
<th>657</th>
<th>658</th>
<th>659</th>
<th>660</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>661</td>
<td>662</td>
<td>663</td>
<td>664</td>
<td>665</td>
<td>666</td>
<td>667</td>
<td>668</td>
<td>669</td>
<td></td>
<td></td>
</tr>
<tr>
<td>683</td>
<td>684</td>
<td>685</td>
<td>686</td>
<td>687</td>
<td>688</td>
<td>689</td>
<td>690</td>
<td>691</td>
<td>692</td>
<td>693</td>
</tr>
<tr>
<td>703</td>
<td></td>
</tr>
<tr>
<td>714</td>
<td>715</td>
<td>716</td>
<td>717</td>
<td>718</td>
<td>719</td>
<td>720</td>
<td>721</td>
<td>722</td>
<td>723</td>
<td>724</td>
</tr>
<tr>
<td>727</td>
<td></td>
</tr>
<tr>
<td>741</td>
<td>742</td>
<td>743</td>
<td>744</td>
<td>745</td>
<td>746</td>
<td>747</td>
<td>748</td>
<td>749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>749</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Write the missing numbers in the grid above.

c. Write the 10 numbers that come after 650.

650; 651; 652; 653; 654; 655; 656; 657; 658; 659

d. Write the next 8 numbers in the 2s pattern.

705; 707; 709; 711; 713; 715; 717; 719

e. Write all the numbers in 3s pattern from 719 to 749.

719; 722; 725; 728; 731; 734; 737; 740; 743; 746; 749

f. Write the next 8 numbers in the 5s pattern.

705; 710; 715; 720; 725; 730; 735; 740; 745; 750
How many blocks do you count?

700 701 702 703 704 705 706

How did you count the blocks?

Complete the number lines.

700 701 702 703 704 705 706

Complete the table.

Write from smallest to biggest

729, 720, 728, 721, 725

659, 705, 607, 701, 706

Write from biggest to smallest

Write the following in words.

706
Numbers 700 to 750

The teacher asks Peter to show 738 with his cards and blocks.

This is what Jabu showed. What did she do wrong?

Peter has the following place value cards and base ten blocks.

Write a number sentence and then the answer.

\[
700 + 40 + 3 = 743
\]

Write a number sentence and then the answer.

\[
700 + 40 + 5 =
\]
Complete the number line.

Write all the numbers smaller than 704. ________________________________
Write all the numbers bigger than 704. ________________________________

Fill in <, > or =

a. 750 _______ 749
b. 732 _______ 723
c. 700 + 40 + 9 _______ 749

Break up your number.

a. Build each number with your cards.
b. Write the value for each digit. Now do these: Break up your number.

Write the number names.

11 12 13 14 15 16 17 18 19 20
2-D shapes

Say if the shape has a straight or round edge.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Say if the shape has a straight or round edge.

How many shapes can you draw with straight edges.

Find pictures

Find shapes that have straight edges and paste them here.

Find shapes that have round edges and paste them here.
Complete the following:

<table>
<thead>
<tr>
<th>Name the shape</th>
<th>Draw the shape in different positions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>triangle</td>
<td></td>
</tr>
<tr>
<td>rectangle</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td></td>
</tr>
</tbody>
</table>

Complete the table:

<table>
<thead>
<tr>
<th>Name the shape</th>
<th>Draw a shape that is smaller</th>
<th>Draw a shape that is bigger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find squares, triangles, rectangles and circles of different sizes in magazines or newspapers. Paste them here.
Term 3

Addition and subtraction to 800

What can I buy with R500?

Which of these items can I buy for exactly R500?

Add on from 600.

Write in the missing numbers.

Start: 600 + 20 → 620 + 15 → 635 + 15 → 650 + 10 → 660

End:

Count back from 800.

Write the "change" each time.

Start: 800 → 790 → 786 → 776

End: 660

Date:
Solve the following:

- \[725 + 53 = \]
- \[664 + 87 = \]
- \[564 + 132 = \]
- \[75 + 717 = \]

James has collected 525 marbles.
If Sipho gave him another 205 marbles, James would have the same number as Sipho.

a. How many marbles would they both have?
b. How many marbles did Sipho have to begin with?

a.
b.
More addition and subtraction to 800

Number families

We can make families of numbers. Each family has two bigger numbers and one smaller number.

Take 4, 8 and 12 as an example.

Find the families.

Write 4 number sentences for each group of numbers.

<table>
<thead>
<tr>
<th>6</th>
<th>8</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>65</td>
<td>335</td>
<td>400</td>
</tr>
<tr>
<td>240</td>
<td>260</td>
<td>500</td>
</tr>
</tbody>
</table>

Look for links.

In this activity we are going to identify the pattern.

\[
\begin{align*}
360 - 50 &= \underline{} \\
50 + \underline{} &= 360 \\
\underline{} + 50 &= 360 \\
570 - 480 &= \underline{} \\
480 + \underline{} &= 570 \\
\underline{} + 480 &= 570 \\
430 - 31 &= \underline{} \\
31 + \underline{} &= 430 \\
\underline{} + 31 &= 430 \\
676 - 70 &= \underline{} \\
70 + \underline{} &= 676 \\
\underline{} + 70 &= 676 \\
799 - 701 &= \underline{} \\
701 + \underline{} &= 799 \\
\underline{} + 701 &= 799
\end{align*}
\]
A long drive.

Mr Mkhize drives to visit his mother who lives 352 km away. He makes a stop after 166 km. How much further must he travel?

<table>
<thead>
<tr>
<th>Kumi does this:</th>
<th>Pumla wrote this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[352 - 166]</td>
<td>[352 - 166]</td>
</tr>
<tr>
<td>[+4 + 30 + 100 + 52]</td>
<td>[= 300 + 50 + 2]</td>
</tr>
<tr>
<td>[166 \rightarrow 170 \rightarrow 200 \rightarrow 300 \rightarrow 352]</td>
<td>[-100 + 60 + 6]</td>
</tr>
<tr>
<td>[30 + 4 + 100 + 52]</td>
<td>[= 300 + 40 + 12]</td>
</tr>
<tr>
<td>[= 134 + 52 = 186 \text{ km}]</td>
<td>[-100 + 60 + 6]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mbali does this:</th>
<th>Peter does this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[352 - 166]</td>
<td>[352 - 166]</td>
</tr>
<tr>
<td>[166 + 100 \rightarrow 266 + 34 \rightarrow 300 + 52]</td>
<td>[= 352 - 100 - 66]</td>
</tr>
<tr>
<td>[\rightarrow 352]</td>
<td>[= 252 - 66]</td>
</tr>
<tr>
<td>[100 + 34 + 52 = 134 + 52 = 186 \text{ km}]</td>
<td>[= 252 - 52 - 14]</td>
</tr>
<tr>
<td>[= 200 - 14]</td>
<td>[= 186 \text{ km}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veronica does this:</th>
<th>Lebo thinks doubles and halves:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[352 - 166]</td>
<td>[\text{Half of } 352 \text{ is } 176]</td>
</tr>
<tr>
<td>[352 - 152 = 200]</td>
<td>[\text{But I must only take } 166,]</td>
</tr>
<tr>
<td>[200 - 14 = 200 - 10 - 4]</td>
<td>[\text{so I add back } 10.]</td>
</tr>
<tr>
<td>[= 190 - 4]</td>
<td>[176 + 10 = 186 \text{ km}]</td>
</tr>
<tr>
<td>[= 186 \text{ km}]</td>
<td>[= 186 \text{ km}]</td>
</tr>
</tbody>
</table>

Talk about the different ways. Which way do you like best? Why?

Solve the following on an extra piece of paper:
Use any of the above methods.

\[746 - 328\] \[800 - 499\]
Addition and subtraction to 800 again

Build your own number families.
A warm up activity.

Example: Make 17

5 + 12 = 17
12 + 5 = 17
17 – 12 = 5
17 – 5 = 12
8 + 9 = 17
9 + 8 = 17
17 – 9 = 8
17 – 8 = 9

For each number below, choose 2 more to make a family.
Write four number sentences (two + and two –) for each number family.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>7</td>
<td>9</td>
<td>7 + 9 = 16</td>
<td>9 + 7 = 16</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find the missing doubles or halves.

246

370

265
Halving to subtract.

If you know your halves and doubles, you can sometimes use them to add or subtract. Examples:

<table>
<thead>
<tr>
<th>Example</th>
<th>Example</th>
<th>Example</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$34 - 18 = 16$</td>
<td>$190 - 97$</td>
<td>$65 + 69$</td>
<td>$242 + 249$</td>
</tr>
<tr>
<td>$34 - 17 = 17$</td>
<td>$190 - 95 = 95$</td>
<td>$65 + 65 = 130$</td>
<td>$= 242 + 242$</td>
</tr>
<tr>
<td>$17 - 1 = 16$</td>
<td>$95 - 2 = 93$</td>
<td>$130 + 4 = 134$</td>
<td>$+ 7$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$= 484 + 7$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$= 491$</td>
</tr>
</tbody>
</table>

Now try these:

<table>
<thead>
<tr>
<th>Example</th>
<th>Example</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$340 - 176$</td>
<td>$145 + 148$</td>
<td>$900 - 452$</td>
</tr>
</tbody>
</table>

Study the ways.

256 children each get a Christmas present. Half get dolls and half get cars. How many get cars?

Way 1

- $256 = 200 + 50 + 6$
- Half of 200 is 100
- Half of 50 is 25
- Half of 6 is 3
- $100 + 25 + 3 = 128$
- Half of 256 is 128
- So 128 get cars.

Way 2

- Half of 250 = 125
- Half of 6 is 3
- $125 + 3 = 128$
- Half of 256 is 128,
- So 128 get cars.

Solve the following on an extra piece of paper:

Use any of the above methods.

728 children each get a toy at the local restaurant.
Half of them get building blocks. How many get building blocks?

642 children each get a muffin.
Half of them get chocolate chip muffins. How many get chocolate chip muffins?
Number patterns: tens to 800

Look at the numbers in the orange shaded blocks. What pattern do you see?

Count in tens from 710 to 800. What comes after 720 when you count in tens?

Count backwards in tens from 800 to 710. What comes before 760 when you count backwards?

<table>
<thead>
<tr>
<th>701</th>
<th>702</th>
<th>703</th>
<th>704</th>
<th>705</th>
<th>706</th>
<th>707</th>
<th>708</th>
<th>709</th>
<th>710</th>
</tr>
</thead>
<tbody>
<tr>
<td>711</td>
<td>712</td>
<td>713</td>
<td>714</td>
<td>715</td>
<td>716</td>
<td>717</td>
<td>718</td>
<td>719</td>
<td>720</td>
</tr>
<tr>
<td>721</td>
<td>722</td>
<td>723</td>
<td>724</td>
<td>725</td>
<td>726</td>
<td>727</td>
<td>728</td>
<td>729</td>
<td>730</td>
</tr>
<tr>
<td>731</td>
<td>732</td>
<td>733</td>
<td>734</td>
<td>735</td>
<td>736</td>
<td>737</td>
<td>738</td>
<td>739</td>
<td>740</td>
</tr>
<tr>
<td>741</td>
<td>742</td>
<td>743</td>
<td>744</td>
<td>745</td>
<td>746</td>
<td>747</td>
<td>748</td>
<td>749</td>
<td>750</td>
</tr>
<tr>
<td>751</td>
<td>752</td>
<td>753</td>
<td>754</td>
<td>755</td>
<td>756</td>
<td>757</td>
<td>758</td>
<td>759</td>
<td>760</td>
</tr>
<tr>
<td>761</td>
<td>762</td>
<td>763</td>
<td>764</td>
<td>765</td>
<td>766</td>
<td>767</td>
<td>768</td>
<td>769</td>
<td>770</td>
</tr>
<tr>
<td>771</td>
<td>772</td>
<td>773</td>
<td>774</td>
<td>775</td>
<td>776</td>
<td>777</td>
<td>778</td>
<td>779</td>
<td>780</td>
</tr>
<tr>
<td>781</td>
<td>782</td>
<td>783</td>
<td>784</td>
<td>785</td>
<td>786</td>
<td>787</td>
<td>788</td>
<td>789</td>
<td>790</td>
</tr>
<tr>
<td>791</td>
<td>792</td>
<td>793</td>
<td>794</td>
<td>795</td>
<td>796</td>
<td>797</td>
<td>798</td>
<td>799</td>
<td>800</td>
</tr>
</tbody>
</table>

Complete the number sequences.

720; 730; 740; ; ; 800; 790; 780; ; ;

Add or subtract ten.

1. Add ten to the given number. We did the first one for you.

b. 762 ______ c. 783 ______ d. 756 ______ e. 714 ______ f. 799 ______

a. 767 + 10 = 777
2. Subtract ten from the given number. We did the first one for you.

b. 762 _____
c. 783 _____
d. 756 _____
e. 714 _____
f. 799 _____

3. What happens when you add or subtract ten to the numbers above?
__

Look at the red circles on the number board.

a. What do you notice about these circled numbers? ______________

b. Extend the following number Sequences:
 704; 714; 724; _____; _____ 782; 772; 762; _____; _____
 715; 725; 735; _____; _____ 737; 747; 757; _____; _____
 799; 789; 779; _____; _____

Fill in the correct number in each circle on these number lines.

a.

<table>
<thead>
<tr>
<th>701</th>
<th>702</th>
<th>703</th>
<th>704</th>
<th>705</th>
<th>706</th>
<th>707</th>
<th>708</th>
<th>709</th>
<th>711</th>
<th>712</th>
<th>713</th>
<th>714</th>
<th>715</th>
<th>716</th>
<th>717</th>
<th>718</th>
<th>719</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

b.

<table>
<thead>
<tr>
<th>741</th>
<th>743</th>
<th>744</th>
<th>745</th>
<th>746</th>
<th>747</th>
<th>748</th>
<th>749</th>
<th>750</th>
<th>751</th>
<th>753</th>
<th>754</th>
<th>755</th>
<th>756</th>
<th>757</th>
<th>758</th>
<th>759</th>
<th>760</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

I have a 3-digit number.
The first digit is 7, the next digit is one more than seven, and the last digit is one less than seven.
Count forward in tens from this number. What number do you get?

__
Rounding off to tens

All the numbers from 4 backwards will be rounded off to 0.

All the numbers from 5 upwards will be rounded off to 10.

Let us talk.

Look at 3 on the number line.

What will 3 be if it is rounded off?

3 rounded off to the nearest ten will be zero.

What will 6 be, rounded off to the nearest 10?

The answer will be 10.

Do the same with:

Round of to the nearest 10.

12 rounded off is? _______

19 rounded off is? _______

53 rounded off is? _______

58 rounded off is? _______

Let’s talk.

50 51 52 53 54 55 56 57 58 59 60
Round off to the nearest 10, using the number lines to help you.

a. 46

Between which two tens are 46?

b. 63

Between which two tens are 63?

c. 37

Between which two tens are 37?

d. 99

Between which two tens are 99?

Tom has R48.00.
The pack of cards he collects cost R5.00.
How many packs of cards can he buy for R48.00?
Term 3

Multiplication: fives up to 75

What comes in fives?
The fingers on one hand.

How many fingers on:
- 2 hands? 9 \times 5 = 45
- 3 hands? 7 \times 5 = 35
- 4 hands? 2 \times 5 = 10
- 5 hands? 4 \times 5 = 20
- 6 hands? 3 \times 5 = 15
- 7 hands? 5 \times 5 = 25
- 8 hands? 10 \times 5 = 50
- 9 hands? 6 \times 5 = 30
- 10 hands? 8 \times 5 = 40

Match the sum with the question on the left:

Complete the table.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Multiply</th>
<th>Sharing</th>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 groups of 5</td>
<td>2 \times 5 = 10</td>
<td>Share 10 between 5</td>
<td>10 \div 5 = 2</td>
</tr>
<tr>
<td>7 groups of 5</td>
<td></td>
<td>Share 35 between 5</td>
<td></td>
</tr>
<tr>
<td>12 groups of 5</td>
<td></td>
<td>Share 60 between 5</td>
<td></td>
</tr>
<tr>
<td>15 groups of 5</td>
<td></td>
<td>Share 75 between 5</td>
<td></td>
</tr>
</tbody>
</table>

Complete the table.

<table>
<thead>
<tr>
<th>Sharing</th>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share 12 between 5</td>
<td>12 \div 5 = 2 remainder 2</td>
</tr>
<tr>
<td>Share 64 between 5</td>
<td></td>
</tr>
<tr>
<td>Share 39 between 5</td>
<td></td>
</tr>
<tr>
<td>Share 73 between 5</td>
<td></td>
</tr>
</tbody>
</table>
Complete the flow diagrams.

Complete the tables below:

<table>
<thead>
<tr>
<th>×</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>×</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

How did you work out the answers that should be written in the blue blocks?

Solve the following:

My mother bought sweets packets worth R70. She paid R5 per packet. How many packets of sweets did she buy?
Number patterns: fives to 800

What can you tell about the numbers in the orange shaded blocks?

Count in fives from 705 to 800.
What comes after 720 when you count in fives?
Count backwards in fives from 800 to 705. What comes before 730 when you count backwards?

<table>
<thead>
<tr>
<th>701</th>
<th>702</th>
<th>703</th>
<th>704</th>
<th>705</th>
<th>706</th>
<th>707</th>
<th>708</th>
<th>709</th>
<th>710</th>
</tr>
</thead>
<tbody>
<tr>
<td>711</td>
<td>712</td>
<td>713</td>
<td>714</td>
<td>715</td>
<td>716</td>
<td>717</td>
<td>718</td>
<td>719</td>
<td>720</td>
</tr>
<tr>
<td>721</td>
<td>722</td>
<td>723</td>
<td>724</td>
<td>725</td>
<td>726</td>
<td>727</td>
<td>728</td>
<td>729</td>
<td>730</td>
</tr>
<tr>
<td>731</td>
<td>732</td>
<td>733</td>
<td>734</td>
<td>735</td>
<td>736</td>
<td>737</td>
<td>738</td>
<td>739</td>
<td>740</td>
</tr>
<tr>
<td>741</td>
<td>742</td>
<td>743</td>
<td>744</td>
<td>745</td>
<td>746</td>
<td>747</td>
<td>748</td>
<td>749</td>
<td>750</td>
</tr>
<tr>
<td>751</td>
<td>752</td>
<td>753</td>
<td>754</td>
<td>755</td>
<td>756</td>
<td>757</td>
<td>758</td>
<td>759</td>
<td>760</td>
</tr>
<tr>
<td>761</td>
<td>762</td>
<td>763</td>
<td>764</td>
<td>765</td>
<td>766</td>
<td>767</td>
<td>768</td>
<td>769</td>
<td>770</td>
</tr>
<tr>
<td>771</td>
<td>772</td>
<td>773</td>
<td>774</td>
<td>775</td>
<td>776</td>
<td>777</td>
<td>778</td>
<td>779</td>
<td>780</td>
</tr>
<tr>
<td>781</td>
<td>782</td>
<td>783</td>
<td>784</td>
<td>785</td>
<td>786</td>
<td>787</td>
<td>788</td>
<td>789</td>
<td>790</td>
</tr>
<tr>
<td>791</td>
<td>792</td>
<td>793</td>
<td>794</td>
<td>795</td>
<td>796</td>
<td>797</td>
<td>798</td>
<td>799</td>
<td>800</td>
</tr>
</tbody>
</table>

Complete the number sequences.

725; 730; 735; __; __; __ 800; 795; 790; __; __; __

Add or subtract five.

a. 760 + 5 = 765

1. Add five to the given number. We did the first one for you.

b. 725 ____ c. 780 ____ d. 755 ____ e. 715 ____ f. 790 ____
2. Subtract five from the given number. We did the first one for you.

b. 760 ___
c. 785 ___
d. 750 ___
e. 715 ___
f. 790 ___

3. What happens when you add or subtract five from the numbers above?

__

Look at the red circles on the number board.

a. What do you notice about these circles? _____________________

b. Extend the following number sequences:
 703; 708; 713; _____; _____; 722; 727; 732; _____; _____
 753; 758; 763; _____; _____; 714; 719; 724; _____; _____
 701; 706; 711; _____; _____; _____

Fill in the correct number in each circle on these number lines.

a. ___________

b. ___________

I have a 3-digit number.

The first digit is 7, the next digit is one more than seven, and the last digit is five less than seven.

Now count forward in fives from this number. What number do you get?
Day time and night time

Cape Town

The table below shows when the sun rises and sets at different times of the year in Cape Town. Read the times in the table and then fill in the rest of the table before answering the questions below.

<table>
<thead>
<tr>
<th>Cape Town</th>
<th>Sunrise</th>
<th>Sunset</th>
<th>Length of day</th>
<th>Length of night</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 23</td>
<td>6:53 am</td>
<td>6:53 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 21</td>
<td>7:51 am</td>
<td>5:44 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 19</td>
<td>6:41 am</td>
<td>6:41 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 22</td>
<td>5:32 am</td>
<td>7:58 pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. In which months are the day and the night the same length? _____________
b. Which month has the longest days? ________________________________
c. Which month has the shortest days? _______________________________
d. Find the difference in hours and minutes between the longest day and the shortest day. __ _ _ _____
e. Find the length of day and night for each date in the table above.
In Polokwane

This table shows when the sun rises and sets at different times of the year in Polokwane. Read the times in the table and then fill in the rest of the table before answering the questions below.

<table>
<thead>
<tr>
<th>Polokwane</th>
<th>Sunrise</th>
<th>Sunset</th>
<th>Length of day</th>
<th>Length of night</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 25</td>
<td>6:08 am</td>
<td>6:08 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 21</td>
<td>6:44 am</td>
<td>5:24 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 17</td>
<td>5:57 am</td>
<td>5:57 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 22</td>
<td>5:13 am</td>
<td>6:50 pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. In which months are the day and the night the same length?

b. In which of these months is the length of day the same in Cape Town and Polokwane?

c. In which months are they different?

d. Find the difference in hours and minutes between the longest day and the shortest day.

e. Find the length of day and night for each date in the table above.

Ask someone to help you to find the sunrise and sunset times in your area. Write them down for one week. Are the days getting longer or shorter?
Multiplication: twos up to 75

What comes in twos?
One pair of shoes.

How many shoes are

1 pair of shoes? 1 \times 2 = 2
2 pairs of shoes? 9 \times 2 = 18
3 pairs of shoes? 7 \times 2 = 14
4 pairs of shoes? 2 \times 2 = 4
5 pairs of shoes? 4 \times 2 = 8
6 pairs of shoes? 3 \times 2 = 6
7 pairs of shoes? 5 \times 2 = 10
8 pairs of shoes? 10 \times 2 = 20
9 pairs of shoes? 6 \times 2 = 12
10 pairs of shoes? 8 \times 2 = 16

Match the sum with the question on the left:

How many shoes are

1 pair of shoes?
2 pairs of shoes?
3 pairs of shoes?
4 pairs of shoes?
5 pairs of shoes?
6 pairs of shoes?
7 pairs of shoes?
8 pairs of shoes?
9 pairs of shoes?
10 pairs of shoes?

Complete the table.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Multiply</th>
<th>Sharing</th>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 groups of 2</td>
<td>10 \times 2 = 20</td>
<td>Share 20 between 2</td>
<td>20 \div 2 = 10</td>
</tr>
<tr>
<td>15 groups of 2</td>
<td>Share 30 between 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 groups of 2</td>
<td>Share 40 between 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 groups of 2</td>
<td>Share 70 between 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete the table.

<table>
<thead>
<tr>
<th>Sharing</th>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share 21 between 2</td>
<td>21 \div 2 = 10 remainder 1</td>
</tr>
<tr>
<td>Share 33 between 2</td>
<td></td>
</tr>
<tr>
<td>Share 67 between 2</td>
<td></td>
</tr>
<tr>
<td>Share 75 between 2</td>
<td></td>
</tr>
</tbody>
</table>
Complete the flow diagrams.

Complete the tables below:

<table>
<thead>
<tr>
<th>×</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>×</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Solve the following:

I bought 36 lollipops for R2.
I paid with a R50, R20 and a R5 coin.
What was my change?
Number patterns: twos up to 800

Look at the numbers in the orange shaded blocks. What pattern do you see?

- Count in twos from 700 to 800.
- What comes after 700 when you count in twos?

<table>
<thead>
<tr>
<th>701</th>
<th>702</th>
<th>703</th>
<th>704</th>
<th>705</th>
<th>706</th>
<th>707</th>
<th>708</th>
<th>709</th>
<th>710</th>
</tr>
</thead>
<tbody>
<tr>
<td>711</td>
<td>712</td>
<td>713</td>
<td>714</td>
<td>715</td>
<td>716</td>
<td>717</td>
<td>718</td>
<td>719</td>
<td>720</td>
</tr>
<tr>
<td>721</td>
<td>722</td>
<td>723</td>
<td>724</td>
<td>725</td>
<td>726</td>
<td>727</td>
<td>728</td>
<td>729</td>
<td>730</td>
</tr>
<tr>
<td>731</td>
<td>732</td>
<td>733</td>
<td>734</td>
<td>735</td>
<td>736</td>
<td>737</td>
<td>738</td>
<td>739</td>
<td>740</td>
</tr>
<tr>
<td>741</td>
<td>742</td>
<td>743</td>
<td>744</td>
<td>745</td>
<td>746</td>
<td>747</td>
<td>748</td>
<td>749</td>
<td>750</td>
</tr>
<tr>
<td>751</td>
<td>752</td>
<td>753</td>
<td>754</td>
<td>755</td>
<td>756</td>
<td>757</td>
<td>758</td>
<td>759</td>
<td>760</td>
</tr>
<tr>
<td>761</td>
<td>762</td>
<td>763</td>
<td>764</td>
<td>765</td>
<td>766</td>
<td>767</td>
<td>768</td>
<td>769</td>
<td>770</td>
</tr>
<tr>
<td>771</td>
<td>772</td>
<td>773</td>
<td>774</td>
<td>775</td>
<td>776</td>
<td>777</td>
<td>778</td>
<td>779</td>
<td>780</td>
</tr>
<tr>
<td>781</td>
<td>782</td>
<td>783</td>
<td>784</td>
<td>785</td>
<td>786</td>
<td>787</td>
<td>788</td>
<td>789</td>
<td>790</td>
</tr>
<tr>
<td>791</td>
<td>792</td>
<td>793</td>
<td>794</td>
<td>795</td>
<td>796</td>
<td>797</td>
<td>798</td>
<td>799</td>
<td>800</td>
</tr>
</tbody>
</table>

Count backwards in fives from 800 to 710. What comes before 750 when you count backwards?

- 720; 722; 724; ____; ____; ____
- 800; 798; 796; ____; ____; ____

Complete the number sequences.

Add or subtract two.

1. Add two to the given number. We did the first one for you.

 - a. 764 + 2 = 766
 - b. 762 ____
 - c. 783 ____
 - d. 756 ____
 - e. 714 ____
 - f. 799 ____
2. Subtract two from the given number.
 We have done the first one for you.

 a. $764 - 2 = 762$
 b. $762 \underline{\hspace{1cm}}$
 c. $783 \underline{\hspace{1cm}}$
 d. $756 \underline{\hspace{1cm}}$
 e. $714 \underline{\hspace{1cm}}$
 f. $799 \underline{\hspace{1cm}}$

3. What happens when you add or subtract two to or from the numbers above?

 Look at the blue circles on the number board.
 a. What do you notice about these circles? _____________________
 b. Extend the following number sequences:

 701; 703; 705; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}
 725; 727; 729; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}
 799; 797; 795; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}
 783; 785; 787; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}
 779; 781; 783; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}; \underline{\hspace{2cm}}

 Fill in the correct number in each circle on these number lines.
 a.

 701 \hspace{1cm} 703 \hspace{1cm} 705 \hspace{1cm} 707 \hspace{1cm} 709 \hspace{1cm} 711 \hspace{1cm} 713 \hspace{1cm} 715 \hspace{1cm} 717 \hspace{1cm} 719

 b.

 741 \hspace{1cm} 743 \hspace{1cm} 745 \hspace{1cm} 747 \hspace{1cm} 749 \hspace{1cm} 750 \hspace{1cm} 751 \hspace{1cm} 753 \hspace{1cm} 754 \hspace{1cm} 755 \hspace{1cm} 756 \hspace{1cm} 757 \hspace{1cm} 758 \hspace{1cm} 759 \hspace{1cm} 760

 I have a 3-digit number.
 The first digit is 7, the next digit is two more than seven, and the last digit is four less than seven.
 Now count forward by two from this number. What number do you get?
Multiplication: 2s and 5s up to 75

How fast can you answer the following?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 2</td>
<td>2 x 5</td>
<td>10 x 2</td>
<td>7 x 2</td>
</tr>
<tr>
<td>8 x 2</td>
<td>5 x 2</td>
<td>8 x 5</td>
<td>4 x 5</td>
</tr>
<tr>
<td>5 x 5</td>
<td>6 x 5</td>
<td>3 x 2</td>
<td>7 x 5</td>
</tr>
<tr>
<td>6 x 2</td>
<td>9 x 5</td>
<td>3 x 5</td>
<td>4 x 2</td>
</tr>
<tr>
<td>10 x 5</td>
<td>5 x 2</td>
<td>1 x 5</td>
<td>9 x 5</td>
</tr>
</tbody>
</table>

Look at what my friend did.
Discuss it.

My friend showed 4×2 as follows:

<table>
<thead>
<tr>
<th>Skip counting</th>
<th>Equal groups</th>
<th>Repeated addition</th>
<th>Arrays</th>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4, 6, 8</td>
<td></td>
<td>2 + 2 + 2 + 2</td>
<td>xx</td>
<td>$2 \times 4 = 8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xx</td>
<td>$4 \times 2 = 8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xx</td>
<td>$8 \div 4 = 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xx</td>
<td>$8 \div 2 = 4$</td>
</tr>
</tbody>
</table>

Now do the same with $4 \times 5 = 20$.

<table>
<thead>
<tr>
<th>Skip counting</th>
<th>Equal groups</th>
<th>Repeated addition</th>
<th>Arrays</th>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiply the following:

\[
\begin{array}{ccc}
24 \times 3 & a. 13 \times 3 & b. 18 \times 3 \\
= (20 + 4) \times 3 & = (20 \times 3) + (4 \times 3) & = 60 + 12 \\
= 72 & & = 72 \\
c. 12 \times 5 & d. 21 \times 3 & e. 14 \times 3 \\
f. 25 \times 3 & g. 12 \times 3 & h. 15 \times 5 \\
\end{array}
\]

Solve the following:

I bought 14 sweets for R3 each. My friend bought 12 sweets for R5 each. How much did we pay altogether for the sweets?
Multiplication: threes up to 75

What comes in threes?
The wheels of a tricycle.

How many wheels are on:
1 tricycle?
2 tricycles?
3 tricycles?
4 tricycles?
5 tricycles?
6 tricycles?
7 tricycles?
8 tricycles?
9 tricycles?
10 tricycles?

Match the sum with the question on the left:
9 \(\times \) 3 = 27
7 \(\times \) 3 = 21
2 \(\times \) 3 = 6
4 \(\times \) 3 = 12
3 \(\times \) 3 = 9
5 \(\times \) 3 = 15
1 \(\times \) 3 = 3
10 \(\times \) 3 = 30
6 \(\times \) 3 = 18
8 \(\times \) 3 = 24

Complete the table.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Multiply</th>
<th>Sharing</th>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 groups of 3</td>
<td>11 (\times) 3 = 33</td>
<td>Share 33 between 3</td>
<td>33 (\div) 3 = 11</td>
</tr>
<tr>
<td>15 groups of 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 groups of 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 groups of 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete the table.

<table>
<thead>
<tr>
<th>Sharing</th>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share 37 between 3</td>
<td>37 (\div) 3 = 12 remainder 1</td>
</tr>
<tr>
<td>Share 74 between 3</td>
<td></td>
</tr>
<tr>
<td>Share 49 between 3</td>
<td></td>
</tr>
<tr>
<td>Share 68 between 3</td>
<td></td>
</tr>
</tbody>
</table>
Complete the flow diagrams.

Complete the tables below:

<table>
<thead>
<tr>
<th>×</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>×</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

How did you work out the answers where the blocks are coloured blue?

Solve the following:

The entry fee was R3 for each child and 23 children entered the park. How much did they pay altogether?
Multiplication: 2s, 3s and 4s up to 75

How fast can you answer the following?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1×2</td>
<td>5×4</td>
<td>5×2</td>
<td>2×2</td>
<td></td>
</tr>
<tr>
<td>6×3</td>
<td>4×2</td>
<td>2×4</td>
<td>7×3</td>
<td></td>
</tr>
<tr>
<td>8×4</td>
<td>2×3</td>
<td>7×2</td>
<td>9×4</td>
<td></td>
</tr>
<tr>
<td>3×2</td>
<td>4×4</td>
<td>10×3</td>
<td>1×3</td>
<td></td>
</tr>
<tr>
<td>3×3</td>
<td>9×2</td>
<td>6×4</td>
<td>10×3</td>
<td></td>
</tr>
</tbody>
</table>

Look at what my friend did.

Discuss it. **5 \times 2 = 10**

I started to show 5×2 as follows:

<table>
<thead>
<tr>
<th>Skip counting</th>
<th>Equal groups</th>
<th>Repeated addition</th>
<th>Arrays</th>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4, _ _ _ _ _</td>
<td>_ _ _ _ _ _ _ _ _</td>
<td>2 + _ _ _ _ _</td>
<td>_ _ _ _ _ rows of 2</td>
<td>2 x _ = _</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 x _ = _</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>_ ÷ _ = _</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>_ ÷ _ = _</td>
</tr>
</tbody>
</table>

Now do the same with $8 \times 3 = 24$.

<table>
<thead>
<tr>
<th>Skip counting</th>
<th>Equal groups</th>
<th>Repeated addition</th>
<th>Arrays</th>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$6 \times 4 = 24$
Divide and test your answer.

$$63 \div 3$$
$$= (60 + 3) \div 3$$
$$= (60 \div 3) + (3 \div 3)$$
$$= 20 + 1$$
$$= 21$$

$$21 \times 3$$
$$= (20 + 1) \times 3$$
$$= (20 \times 3) + (1 \times 3)$$
$$= 60 + 3$$
$$= 63$$

a. $$48 \div 5$$

b. $$64 \div 5$$

Solve the following:

My friends and I have R63 altogether.
We want to share it equally between the three of us.
How much will each of us get?
Number patterns: threes to 800

Look at the numbers in the orange shaded blocks. What pattern do you see?

Count in threes from 703 to 799. What comes after 745 when you count in threes?

Count backwards in fives from 799 to 903. What comes before 766 when you count backwards?

Complete the number sequences.

703; 706; 709; ______; ______; ______; ______ ; ______ ; ______

799; 796; 793; ______; ______; ______; ______ ; ______ ; ______

Add or subtract three.

1. Add three to the given number. We did the first one for you.

b. 766 ______

c. 783 ______

d. 756 ______

e. 713 ______

f. 790 ______

a. $766 + 3 = 769$
2. Subtract three from the given number.
 We have done the first one for you.
 a. $766 - 3 = 763$
 b. 763 ____
 c. 789 ____
 d. 756 ____
 e. 713 ____
 f. 799 ____

3. What happens when you add or subtract three to or from the numbers above?

Look at the blue circles on the number board.

a. What do you notice about these circles? _____________________

b. Extend the following number sequences:
 704; 707; 710; ____; ____; ____
 773; 776; 779; ____; ____; ____
 782; 785; 788; ____; ____; ____
 779; 782; 785; ____; ____; ____

Fill in the correct number in each circle on these number lines.

a. 701 702 704 705 707 708 710 711 713 714 716 717 719 720
 721

b. 741 743 744 746 747 749 750 752 753 755 756 758 759
 761

I have a 3-digit number:

The first digit is 7, the next digit is two more than seven, and the last digit is seven less than seven.

Now count forward in threes from this number. What number do you get?
Multiplication: fours up to 75

What comes in fours?
The wheels of a car.

How many wheels are on

Match the sum with the question on the left:

9 \times 4 = 36
7 \times 4 = 28
2 \times 4 = 8
4 \times 4 = 16
3 \times 4 = 12
5 \times 4 = 20
1 \times 4 = 4
10 \times 4 = 40
6 \times 4 = 24
8 \times 4 = 32

Complete the table.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Multiply</th>
<th>Sharing</th>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 groups of 4</td>
<td>12 \times 4 = 48</td>
<td>Share 48 between 4</td>
<td>48 \div 4 = 12</td>
</tr>
<tr>
<td>16 groups of 4</td>
<td></td>
<td>Share 64 between 4</td>
<td></td>
</tr>
<tr>
<td>18 groups of 4</td>
<td></td>
<td>Share 72 between 4</td>
<td></td>
</tr>
<tr>
<td>15 groups of 4</td>
<td></td>
<td>Share 60 between 4</td>
<td></td>
</tr>
</tbody>
</table>

Complete the table.

<table>
<thead>
<tr>
<th>Sharing</th>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share 35 between 4</td>
<td>35 \div 4 = 8 \text{ remainder 3}</td>
</tr>
<tr>
<td>Share 55 between 4</td>
<td></td>
</tr>
<tr>
<td>Share 70 between 4</td>
<td></td>
</tr>
<tr>
<td>Share 75 between 4</td>
<td></td>
</tr>
</tbody>
</table>
Complete the flow diagrams.

Complete the tables below:

<table>
<thead>
<tr>
<th>× 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>× 16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

How did you work out the answers where the blocks are coloured blue?

Solve the following:

I have R75.
How many small party gifts at R4 each can I buy?
Number patterns: fours up to 800

Look at the numbers in the orange shaded blocks. What pattern do you see?

Count in fours from 704 to 800. Count backwards in fours from 800 to 704. What comes before 776 when you count backwards?

<table>
<thead>
<tr>
<th>701</th>
<th>702</th>
<th>703</th>
<th>704</th>
<th>705</th>
<th>706</th>
<th>707</th>
<th>708</th>
<th>709</th>
<th>710</th>
</tr>
</thead>
<tbody>
<tr>
<td>711</td>
<td>712</td>
<td>713</td>
<td>714</td>
<td>715</td>
<td>716</td>
<td>717</td>
<td>718</td>
<td>719</td>
<td>720</td>
</tr>
<tr>
<td>721</td>
<td>722</td>
<td>723</td>
<td>724</td>
<td>725</td>
<td>726</td>
<td>727</td>
<td>728</td>
<td>729</td>
<td>730</td>
</tr>
<tr>
<td>731</td>
<td>732</td>
<td>733</td>
<td>734</td>
<td>735</td>
<td>736</td>
<td>737</td>
<td>738</td>
<td>739</td>
<td>740</td>
</tr>
<tr>
<td>741</td>
<td>742</td>
<td>743</td>
<td>744</td>
<td>745</td>
<td>746</td>
<td>747</td>
<td>748</td>
<td>749</td>
<td>750</td>
</tr>
<tr>
<td>751</td>
<td>752</td>
<td>753</td>
<td>754</td>
<td>755</td>
<td>756</td>
<td>757</td>
<td>758</td>
<td>759</td>
<td>760</td>
</tr>
<tr>
<td>761</td>
<td>762</td>
<td>763</td>
<td>764</td>
<td>765</td>
<td>766</td>
<td>767</td>
<td>768</td>
<td>769</td>
<td>770</td>
</tr>
<tr>
<td>771</td>
<td>772</td>
<td>773</td>
<td>774</td>
<td>775</td>
<td>776</td>
<td>777</td>
<td>778</td>
<td>779</td>
<td>780</td>
</tr>
<tr>
<td>781</td>
<td>782</td>
<td>783</td>
<td>784</td>
<td>785</td>
<td>786</td>
<td>787</td>
<td>788</td>
<td>789</td>
<td>790</td>
</tr>
<tr>
<td>791</td>
<td>792</td>
<td>793</td>
<td>794</td>
<td>795</td>
<td>796</td>
<td>797</td>
<td>798</td>
<td>799</td>
<td>800</td>
</tr>
</tbody>
</table>

Complete the number sequences.

704; 708; 712; ____; ____; ____ 724; 728; 732; ____; ____; ____

Add or subtract four

1. Add four to the given number. We have done the first one for you.

 a. $764 + 4 = 768$
 b. 764 ____
 c. 788 ____
 d. 754 ____
 e. 718 ____
 f. 794 ____
2. Subtract four from the given number.
 We have done the first one for you.

 b. 768 _____ c. 784 _____ d. 752 _____ e. 714 _____ f. 798 _____

3. What happens when you add or subtract four to or from the numbers above?

 Look at the blue circles on the number board.

 a. What do you notice about these circles? ____________________________

 b. Extend the following number sequences:

 711; 715; 719; _____; _____;

 703; 707; 711; _____; _____;

 783; 779; 775; _____; _____;

 773; 777; 781; _____; _____;

 799; 795; 791; _____; _____;

 Fill in the correct number in each circle on these number lines.

 a. 701 703 705 707 709 711 712 713 715 716 717 719 720

 721

 b. 711 713 715 717 719 721 751 753 755 757 759 760

 I have a 3-digit number.

 The first digit is 7, the next digit is one more than seven, and the last digit is three less than seven.

 Now count forward in fours from this number. What number do you get?

Multiplication and division:
2s, 3s, 4s and 5s up to 75

How fast can you answer the following?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 × 2 = _____</td>
<td>5 × 3 = _____</td>
<td>4 × 2 = _____</td>
<td>10 × 2 = _____</td>
<td></td>
</tr>
<tr>
<td>4 × 3 = _____</td>
<td>3 × 2 = _____</td>
<td>2 × 2 = _____</td>
<td>3 × 3 = _____</td>
<td></td>
</tr>
<tr>
<td>6 × 4 = _____</td>
<td>4 × 3 = _____</td>
<td>5 × 3 = _____</td>
<td>9 × 4 = _____</td>
<td></td>
</tr>
<tr>
<td>6 × 5 = _____</td>
<td>8 × 3 = _____</td>
<td>9 × 4 = _____</td>
<td>8 × 5 = _____</td>
<td></td>
</tr>
<tr>
<td>7 × 3 = _____</td>
<td>8 × 5 = _____</td>
<td>2 × 5 = _____</td>
<td>7 × 5 = _____</td>
<td></td>
</tr>
</tbody>
</table>

Colour the blocks where the sum gives you a remainder.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12 ÷ 2 = 6</td>
<td>13 ÷ 3 = 4 rem 1</td>
<td>15 ÷ 5 = _____</td>
<td>18 ÷ 5 = _____</td>
<td></td>
</tr>
<tr>
<td>20 ÷ 4 = _____</td>
<td>23 ÷ 4 = _____</td>
<td>16 ÷ 3 = _____</td>
<td>18 ÷ 3 = _____</td>
<td></td>
</tr>
<tr>
<td>25 ÷ 2 = _____</td>
<td>24 ÷ 2 = _____</td>
<td>30 ÷ 2 = _____</td>
<td>29 ÷ 2 = _____</td>
<td></td>
</tr>
<tr>
<td>19 ÷ 3 = _____</td>
<td>17 ÷ 3 = _____</td>
<td>31 ÷ 5 = _____</td>
<td>30 ÷ 5 = _____</td>
<td></td>
</tr>
<tr>
<td>55 ÷ 5 = _____</td>
<td>52 ÷ 5 = _____</td>
<td>57 ÷ 3 = _____</td>
<td>60 ÷ 3 = _____</td>
<td></td>
</tr>
</tbody>
</table>

How do you know that a number can be divided by:

• 3? If you add the digits of a number (e.g. 72 has the digits 7 + 2 = 9) and you can divide that new number by 3 (e.g. 9 is divisible by 3).

• 2? ___

• 5? ___
Divide and test your answer.

\[
\begin{align*}
65 \div 3 &= (60 + 5) \div 3 \\
&= (60 \div 3) + (5 \div 3) \\
&= 20 + 1 \text{ rem } 2 \\
&= 21 \text{ rem } 2
\end{align*}
\]

\[
\begin{align*}
21 \times 3 + 2 &= (20 + 1) \times 3 + 2 \\
&= (20 \times 3) + (1 \times 3) + 2 \\
&= 60 + 3 + 2 \\
&= 65
\end{align*}
\]

a. \(49 \div 5\)

b. \(65 \div 5\)

Solve the following:

You need to go and do some research. How do you know if a number is divisible by 4?
Properties of 3-D objects

Look at the pictures.
Talk about the surfaces of the objects using words such as flat and curved.

Balls

Boxes

Cylinders

Pyramids

Cones

Look at the pictures and complete the sentences and questions.

a. The ball__________.

b. Why doesn’t the ball slide?__________

c. The cylinder__________.

d. Can the cylinder also slide?__________
Name the objects used in each picture.

You only have to name each object once. Say if the object can roll or slide.

A box balancing on a cylinder.
A ball balancing on a cylinder.
A cylinder balancing on a box.

Say if the 3-D objects have flat or curved surfaces.

Draw the following:

A box balancing on a cylinder.
A ball balancing on a cylinder.
A cylinder balancing on a box.
Fraction strip kits

Materials: 5 strips of paper in different colours, Scissors, Pencils/Crayons

Make the kit
Cut-out 5

On one strip write the words: “One Whole”
Take another strip and carefully fold it in half. Then open it up. How many equal parts do you have? Write $\frac{1}{2}$ on each half and cut along the folds.

Take a third strip and fold it in half, then fold it in half again. Open it. How many equal parts do you have? Write $\frac{1}{4}$ on each fourth, and then cut along the folds.

Now try and make two more strips, one showing fifths and the other eighths.

Use the fraction kit pieces to help you answer these questions.

How many fifths equal one whole? How many eighths equal one half?

Fractions on a number line.

This strip shows one whole.

\[\text{One Whole}\]

Divide the strip into thirds.

Colour one third.

This circle shows one whole.

\[\text{One Whole}\]

Divide the circle into thirds.

Colour one third.
Colour the following:

<table>
<thead>
<tr>
<th>One half</th>
<th>Three quarters</th>
<th>Two thirds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Four fifths</th>
<th>One half</th>
<th>Five eighths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw the following:

<table>
<thead>
<tr>
<th>Three quarters using a square.</th>
<th>One half using a circle.</th>
<th>Two thirds using a triangle.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Four fifths using a circle.</th>
<th>Four eighths using a square.</th>
<th>Two thirds using a rectangle.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepare your kit

- Cut out each of the 6 circles in Cut-out 6.
- Cut five of the circles into pieces along the lines.
- Label each piece:
 - On one side write the fraction of the whole hour.
 - On the other side write the number of minutes in that fraction.
More fractions

Write Yes or No

- A half is half of one whole
- A half of a half is one quarter
- A quarter is half of a half
- A half and two quarters make a whole
- A half and a quarter make three quarters

Share a pie
Sipho, Gugu, Andile and Lisa share one pie.

a. I am hungry! I want half!

Sipho

b. Okay! I’ll have a quarter.

Gugu

c. I will have half of what is left.

Andile

d. How much of the pie is left for me?

Lisa

Draw Sipho’s share.

Draw Sipho and Gugu’s shares.

Draw Sipho, Gugu and Andile’s share.

Draw all their shares of the pie.
Four friends share 5 liquorice sticks equally.
How much will each one get?
What is the question?
What are the numbers?
Draw a picture.

Six friends share 9 liquorice sticks equally.
How much will each one get?
What is the question?
What are the numbers?
Draw a picture.
Sharing leading to fractions

Here are 12 counters

We are two friends. We have only one container divided exactly in half:

We say this is one half.

We say this is one half.

We share the twelve counters between the two of us.

I got six counters.

I got six counters.

Make a drawing of the following and answer the question.

Nine balls divided between three friends.

• How many balls will each girl get?

• What is the fraction each girl will get?

Twelve balls divided between four friends. Three of the friends are boys.

• How many balls will each girl get?

• What is the fraction each boy will get?

What fraction will Mandla get? What fraction will Lisa get?

• How many balls will Mandla and Lisa get?

• How many balls will Mandla and Lisa get?
Sharing sweets.

Some friends share some sweets. They each get $\frac{1}{2}$ (half) of a packet.

a. How many packets do they need to share between:

4 friends?
6 friends?
9 friends?

b. How many friends can share:

4 packets?
10 packets?
$3\frac{1}{2}$ packets?

Dancing skirts.

The mothers and grannies make dancing skirts.

For 1 skirt they need $2\frac{1}{2}$ metres (m) of fabric.
The fabric costs R6 a metre.

a. How many skirts can they make from?

5 m
10 m
20 m
25 m

b. How much fabric do they need to make?

2 skirts
3 skirts
4 skirts

c. How much does the fabric cost to make?

1 skirt
2 skirts
3 skirts

d. How many skirts can they make for:

R450
R825
R180
The word perimeter means the length or distance around an object.

A farmer has a triangular plot of ground. We can find the perimeter of the plot by adding up the lengths of the sides.

Perimeter = 12 m + 12 m + 6 m = 30 m

Veronica’s garden.
Veronica draws a diagram of the garden she wants to plant.

a. What is the perimeter of the area where she plants her herbs? _____________
b. Which two sections have the same perimeter? What is their perimeter?
_________________ and __________________ have a perimeter of ____________ m.
c. She needs a fence around the whole garden. The fencing costs R50 per meter. How much will the fence cost? _______________
Plan your own garden.

Use grid paper from Cut-out 7 to plan your own garden. Show all the measurements and the crops you would like to grow.

Measuring circles.

Work with a partner.

Materials: 10 circular objects of different sizes like a plate, a glass, sticky tape, a bottle cap, string and scissors

1. Choose one of the round objects to measure with the string.
2. Cut a piece of string the exact length that just fits around the object.
3. Now take the same string and stretch it to reach across the circle. Count how many times it fits across.
4. Do the same with other circular objects.
5. Write what you notice.

<table>
<thead>
<tr>
<th>The distance around a circle is called the circumference.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The distance across a circle is called the diameter.</td>
</tr>
</tbody>
</table>
95a

Trading money

Play these games with a partner.

Materials:
Money Board (Cut-out 8), paper and pencil, two dice,
play money (from Cut-out 9): R100 and R10 notes; R1, 10c and 1c coins.

Place the Money Board on the table.
The board has 5 sections which are, from left to right, R100, R10, R1, 10
cents, and 1 cent. For this game we are using the first 3 columns.

Add up to 100 Rand.

1. Each player takes a turn to roll the dice. Add the two numbers together.
2. Take that number of R1 coins and place them in the R1 section of your board.
3. As soon as you have ten R1 coins you must trade them for a R10 note.

4. The first one to collect ten R10 notes and trade them for a R100 note is the winner.

5. Penalties: If a player finishes the turn and forgets to trade ten R1 coins for one R10 note, and the other player catches the mistake, the penalty is R1.
 If a player forgets to trade ten R10 notes for one R100 note, he or she must pay R10 to the other player.
2 Subtract from R100 to RO.

Play the same game, except start with ten R10 notes, and subtract the sum of the numbers on the dice. The player who gets to RO first is the winner.

3 Addition and Subtraction to R1 000.

Add the sum of the dice on each turn, and take that number of R10 notes. The first one to reach R1 000 is the winner. Or, start with R1 000, and on each turn subtract. The first player to reach RO wins.

4 Adding up to R1.

Play the same as the first game, except this time when you roll the dice and find the sum, take the sum of the dice in 1 cent coins. When you have ten 1c coins, change them for a 10c coin. The first one who can change ten 10c coins for a R1 coin is the winner.

5 Subtract cents.

Start with R1, and subtract on each play. The first to get to 0 cents is the winner.
Let’s go shopping!
Hats for sale.
The shop sells hats at 5 different prices.

<table>
<thead>
<tr>
<th>Hat</th>
<th>R20</th>
<th>R20</th>
<th>R20</th>
<th>R20</th>
<th>R20</th>
<th>R20</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>R20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R120</td>
</tr>
<tr>
<td>b</td>
<td>R25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R25</td>
</tr>
<tr>
<td>c</td>
<td>R50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R50</td>
</tr>
<tr>
<td>d</td>
<td>R75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R75</td>
</tr>
<tr>
<td>e</td>
<td>R100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R100</td>
</tr>
</tbody>
</table>

a. Find the value of the hats in each row.
b. MaZondo buys 1 of each kind of hat.
 How much does she pay altogether? _______________
c. Buti spends R450 altogether. He buys 1 hat for R100.
 What other hats does he buy? Show 2 possible answers.

<table>
<thead>
<tr>
<th>Answer 1</th>
<th>Answer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check! Compare! Correct!
Musa uses this recipe to make a sponge cake.

Sponge cake recipe
For the cake: 40 g of self-raising flour; 3 eggs; 50 g of icing sugar
For the filling: 140 ml cream

--

Quick sums

\[
\begin{array}{cccc}
10 \times 7 &=& 10 \times 70 &=& 5 \times 7 &=& 5 \times 70 &=& 70 \times 2 \\
12 \times 4 &=& 12 \times 8 &=& 6 \times 16 &=& 5 \times 9 &=& 50 \times 9 \\
15 \times 3 &=& 15 \times 6 &=& 10 \times 4 &=& 8 \times 4 &=& 18 \times 4 \\
\end{array}
\]

--

a. Work out how much Musa needs, to bake up to 6 cakes.

<table>
<thead>
<tr>
<th>Cake</th>
<th>Flour</th>
<th>Eggs</th>
<th>Icing sugar</th>
<th>Cream</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40 g</td>
<td>3</td>
<td>50 g</td>
<td>140 ml</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Tick (✓) the correct answer.

1 litre of cream can fill about: 10 cakes; 7 cakes; 8 cakes
More about data

At the police station.
Five policemen do different jobs. Where are they now?

<table>
<thead>
<tr>
<th></th>
<th>At the desk</th>
<th>On patrol</th>
<th>In court</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serufe</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Maria</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sam</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amos</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Dudu</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Write the names of who is: At the desk? __________________________
On patrol? __________________________
In court? ____________________________

Tree day
Five schools compete to see who can plant the most trees on Arbor Day.

= 10 trees

Klipspruit
Mthonjeni
Sonskyn
Thuthong
Mosiba

How many trees does each school plant?

<table>
<thead>
<tr>
<th>Klipspruit</th>
<th>Mthonjeni</th>
<th>Sonskyn</th>
<th>Thuthong</th>
<th>Mosiba</th>
</tr>
</thead>
</table>

How many trees did the schools plant altogether? ____________________________
What kind of roof?
The Grade 3 class do a survey in their village. They want to find out about the kinds of roofs on different houses. They show their results in this block graph. They draw 1 tick (✓) for each house they see.

<table>
<thead>
<tr>
<th>Tiles</th>
<th>Thatch</th>
<th>Wood</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

How many of each kind of roof do they see?

Tiles _________ Thatch _________ Wood _________ Iron _________

Which is the most popular kind of roof? _______________________

How many roofs do they count altogether? _____________________

Hat sizes
The boys at Juma school wear school caps. The caps come in sizes 2, 3 and 4.

Count how many learners wear each size of cap.

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Which is the most common size? _____________________
How long is the coloured line?

First estimate and then measure the lines. Complete the table.

<table>
<thead>
<tr>
<th>Line</th>
<th>Estimation</th>
<th>Measurement</th>
<th>Difference between estimation and measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use a ruler to draw the following lines.

a. 10 cm

b. 7 cm

c. 15 cm

Say if you will measure the following in metres or centimetres.

a. The length of a book ____________

b. The height of a door ____________

c. The length of a pencil ____________

d. Your height ____________

e. The length of your finger ____________

During the year you used your ten colouring pencils. The length of your pencils was 15 cm before you used them.

After you used it your red pencil is 7 cm, blue 5 cm, green 6 cm, yellow 11 cm, purple 12 cm, orange 9 cm, brown 14 cm, black 8 cm, pink 13 cm and white 15 cm.

a. Which pencil did you use the most? ____________

b. Which pencil did you use the least? ____________

c. Write the length of your pencils from the shortest to the longest ________________
Numbers 700 to 800

Count and write.

a. Use the following chart to help you count from 700 – 800. Say the numbers out aloud as you count.

<table>
<thead>
<tr>
<th>701</th>
<th>704</th>
<th>710</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>718</td>
</tr>
<tr>
<td>722</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>736</td>
<td></td>
</tr>
<tr>
<td>741</td>
<td></td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>758</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>773</td>
</tr>
<tr>
<td>792</td>
<td>795</td>
<td>800</td>
</tr>
</tbody>
</table>

b. Write the missing numbers in the grid above.

c. Write the 10 numbers that come after 750.

750: __; __; __; __; __; __; __; __; __; __;

d. Write the next 8 numbers in the 2s pattern.

762; 764; 766; __; __; __; __; __;

e. Write all the numbers in 2s pattern from 751 to 773.

751: __; __; __; __; __; __; __; __; __; __; __; 773

f. Write the next 8 numbers in the 5s pattern.

751; 756; 761; __; __; __; __; __;
How many blocks do you count?

750

How did you count the blocks?

Complete the number lines.

750

753

789

787

Complete the table.

Write from smallest to biggest.

Write from biggest to smallest.

776, 772, 779, 770, 778

736, 703, 730, 713, 703

Write the following in words.

788
Write a number sentence and then the answer.

700 + 60 + 7 = 767

Write a number sentence and then the answer.

700 + 90 + 9 =
Complete the number line.

Write all the numbers smaller than 795.

Write all the numbers bigger than 795.

Fill in <, > or =.

a. $799 \quad \square \quad 766$
 b. $745 \quad \square \quad 750$
 c. $700 + 90 + 7 \quad \square \quad 767$

Break up your number.

a. Build each number with your cards.

b. Write the value for each digit. Now do these: Break up your number.

Example: 799

<table>
<thead>
<tr>
<th>7</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Write the number names.

| 668 | 757 | 799 | 742 | 691 |
Numbers 800 to 900

Count and write.

- Use the following chart to help you count from 800 – 900. Say the numbers aloud as you count.

<table>
<thead>
<tr>
<th>801</th>
<th>804</th>
<th>810</th>
</tr>
</thead>
<tbody>
<tr>
<td>822</td>
<td></td>
<td>818</td>
</tr>
<tr>
<td>841</td>
<td>836</td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>858</td>
<td></td>
</tr>
<tr>
<td>873</td>
<td></td>
<td>890</td>
</tr>
<tr>
<td>892</td>
<td>895</td>
<td>900</td>
</tr>
</tbody>
</table>

- Write the missing numbers in the grid above.
- Write the 10 numbers that come after 800.

800; ____; ____; ____; ____; ____; ____; ____; ____; ____; ____

- Write the next 8 numbers in the 2s pattern.

852; 854; 856; ____; ____; ____; ____; ____

- Write all the numbers in the 2s pattern from 807 to 829.

807; ____; ____; ____; ____; ____; ____; ____; ____; 829

- Write the next 8 numbers in the 5s pattern.

834; 839; 844; ____; ____; ____; ____; ____
How many blocks do you count?

How did you count the blocks?

Complete the number lines.

Complete the table. Write from smallest to biggest. Write from biggest to smallest.

Write the following in words.

543
The teacher asked Peter to show 854 with his cards and blocks.

This is what Ben showed. What did he do wrong?

Peter had the following place value cards and base ten blocks.

Write a number sentence and then the answer.

800 + 80 + 5 = 885

Write a number sentence and then the answer.

800 + 50 + 2 =

800 + 90 + 7 =

800 + 3 =
Complete the number line.

889 890 891 892 893 894 895 896 897 898 899 900

Write all the numbers smaller than 894. ________________________________

Write all the numbers bigger than 894. ________________________________

Fill in <, > or =

a. 899 _____ 898
b. 802 _____ 820
c. 900 + 70 + 5 _____ 785

Break up your number.

a. Build each number with your cards.

b. Write the value for each digit. Now do these: Break up your number.

<table>
<thead>
<tr>
<th>Number</th>
<th>Break up</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>890</td>
<td>800 + 70 + 6</td>
<td></td>
</tr>
<tr>
<td>889</td>
<td>800 + 70 + 6</td>
<td></td>
</tr>
<tr>
<td>802</td>
<td>800 + 70 + 6</td>
<td></td>
</tr>
<tr>
<td>855</td>
<td>800 + 70 + 6</td>
<td></td>
</tr>
<tr>
<td>840</td>
<td>800 + 70 + 6</td>
<td></td>
</tr>
</tbody>
</table>

Write the number names.

889
825
803
830
899
Weighing things

Look at the following pictures and answer the questions.

a. Is the 1 kg washing powder lighter or heavier than the 2 kg washing powder?

b. What is lighter: The 500 g breakfast cereal or the 200 g of biscuits?

c. What is heavier: The 100 g skin care cream or the 1 kg packet of samp?

How much do we weigh all together?
I weigh 25 kg, my friend 29 kg and my brother 45 kg.

How much do the products weigh together?
The first product weighs 1 kg 500 g, the second product 3 kg 500 g and the last product 2 kg 500 g.
Look at the pictures and answer the questions.

1.5 kg is the same as 1 kg and 500 g.

2.5 kg is the same as 2 kg and 500 g.

How can I write 3.5 kg as kilograms and grams?

Complete the table.

Your teacher will give you five objects to look at. Estimate their weight and then measure it.

<table>
<thead>
<tr>
<th>Object</th>
<th>Estimation</th>
<th>Measurement</th>
<th>Difference between estimation and measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How much do the products weigh together?
The first product weighs 2 kg 500 g, the second product 1 kg 500 g and the last product 3 kg 500 g.
Let’s weigh some more

Mass is the measure of how much stuff or matter there is in an object. The more there is, the harder it is to move it.

Weight is a measure of the force of gravity pulling on that matter. Gravity is less on the moon so things weigh less there.

On earth for everyday purposes we use the same measures for both mass and weight. We measure mass in kilograms and grams.

Different scales

We use different kinds of scales to measure mass and weight. We measure mass with a balance and weight with a spring scale.

A litre of water has a mass of 1 kg.

This fish has a weight of 7 kg.

Find their weight

Write the weight in kg shown on each of these spring scales.
We use grams to measure the mass of smaller or lighter objects and to measure fractions of a kilogram.

1 000 g = 1 kg

On this spring scale, each small line is 10 grams of weight. The tomatoes weigh 320 grams.

How much do they weigh?
Draw where the arrow on the scale must go each time.

Make a kilogram.
Add on to make 1 kg (1 000 g).

a. 125 g + 250 g + 125 g + _________ g = 1 000 g (1 kg)
b. 50 g + 30 g + 240 g + 60 g + 100 g + _________ = 1 kg
c. 57 g + 46 g + 243 g + 334 g = _________ = 1 000 g (1 kg)
d. 50 g + 90 g + 160 g + _________ = 1 000 g (1 kg)
Numbers 900 to 1000

Count and write.

a. Use the following chart to help you count from 900 – 1000. Say the numbers out aloud as you count.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>903</td>
<td></td>
<td></td>
<td>910</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>943</td>
<td></td>
<td>948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>981</td>
<td></td>
<td>991</td>
<td></td>
<td>999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Write the missing numbers in the grid above.

c. Write the 10 numbers that come after 900.

900; __; __; __; __; __; __; __; __; __; __

d. Write the next 8 numbers in the 2s patterns.

946; 948; 950; __; __; __; __; __; __; __

e. Write all the numbers in the 2s pattern from 945 to 967.

945; __; __; __; __; __; __; __; __; __; 967

f. Write the next 8 numbers in the 5s pattern.

936; 941; 946; __; __; __; __; __; __; __;
How many blocks do you count?

How did you count the blocks?

Complete the number lines.

Write from smallest to biggest.
Write from biggest to smallest.

Complete the table.

Write the following in words.

695
Andile had the following place value cards and base ten blocks.

The teacher asked Andile to show 932 with his cards and blocks.

This is what Gugu showed. What did she do wrong?

Write a number sentence and then the answer.

900 + 80 + 4 = 984

Write a number sentence and then the answer.

900 + 90 + 9

=
Complete the number line.

Write all the numbers smaller than 995. _________________________________

Write all the numbers bigger than 995. _________________________________

Fill in <, > or =.

a. 999 ______ 7 998
b. 957 ______ 975
c. 900 + 60 + 1 ______ 961

Break up your number.

a. Build each number with your cards.
b. Write the value for each digit. Now do these: Break up your number.

Write the number names.

976
905
950
821
909
Addition and subtraction to 999

Term 4

Write a number sentence for each.

Explain how you counted the blocks.

Explain how you counted the blocks.

Use the example to guide you.

5 0 5 0 double 50 is 100 3 0 0 3 0 0

2 0 0 2 0 0 3 3

Use near doubles to solve the following.

Use the example to guide you.

a. 43 + 44 = double 43 + 1 43 + 43 + 1 = 87

b. 81 + 41 =

c. 40 + 41 =

d. 66 + 67 =
Use doubles or near doubles to solve the following. Use the example to guide you.

a. Double 340
 = 340 + 340
 = Double 340
 = 300 + 300 + 40 + 40
 = 600 + 80
 = 680

b. 340 + 341
 = Double 340 + 1
 = 300 + 300 + 40 + 40 + 1
 = 600 + 80 + 1
 = 681

c. 470 + 470

d. 461 + 462

Solve the following:

The Grade 2s have a collection of 360 marbles.
The Grade 3s have 216 fewer marbles than the Grade 2s.
How many marbles do the Grade 3s have?
Baking day.

Aunt Phindi bakes bread in her oven.
Show the time on these watches.

She puts the bread in at a **quarter past 4**.

She takes the bread out at **five past five**.

How long does the bread take to bake?

Ann’s mother uses a microwave oven. It is much quicker.

It is now 16:30. Look at the cooking time set on the microwave oven dial.

When will the bread be ready?

How much quicker is the microwave oven than the other oven?

Morning jobs.

On Saturday morning Musa and Palesa help their mother in the house. How long does each task take?

<table>
<thead>
<tr>
<th>Task</th>
<th>Start</th>
<th>End</th>
<th>How long?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make breakfast</td>
<td>6:15</td>
<td>6:40</td>
<td></td>
</tr>
<tr>
<td>Wash dishes</td>
<td>7:20</td>
<td>8:05</td>
<td></td>
</tr>
<tr>
<td>Clean the kitchen</td>
<td>8:20</td>
<td>9:15</td>
<td></td>
</tr>
<tr>
<td>Clean the bathroom</td>
<td>10:00</td>
<td>10:25</td>
<td></td>
</tr>
<tr>
<td>Clean the bedrooms</td>
<td>11:30</td>
<td>12:15</td>
<td></td>
</tr>
</tbody>
</table>
A hosepipe can use up to **30 litres of water in 1 minute**!

How many litres of water can a hosepipe use in:

- 2 minutes __________ litres.
- 2½ minutes __________ litres.
- 5 minutes __________ litres.
- 10 minutes __________ litres.

Water the garden.

A hosepipe can use up to 30 litres of water in 1 minute!

How many litres of water can a hosepipe use in:

- 2 minutes __________ litres.
- 2½ minutes __________ litres.
- 5 minutes __________ litres.
- 10 minutes __________ litres.

Cooking curry.

Babu’s father makes and sells curry. In one week, he uses 750 ml of oil.

He writes down how much oil he uses each day.

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Friday</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>98 ml</td>
<td>122 ml</td>
<td>108 ml</td>
<td>117 ml</td>
<td>109 ml</td>
<td>135 ml</td>
<td>?</td>
</tr>
</tbody>
</table>

a. How many millilitres (ml) of oil does he use from Monday to Saturday? __________ ml

b. How many millilitres (ml) of oil does he use on Sunday? __________ ml

c. One 750 millilitres (ml) bottle of oil costs R18.50.

How much do 4 bottles cost? __________.
A train journey.

Kgethi and her 3 children go on the train. Adults and children pay the same. Kgethi pays with these notes. She gets R30 change.

What is the price of 1 ticket? Tick (✓) the correct answer:
a. R90
b. R32
c. R80
d. R45.50
Sandle’s spaza shop.

Sandile keeps a record of his earnings in a table. First he estimates his daily income and then he calculates his daily income exactly. Income is the money we earn or receive. Help Sandile to complete his calculations in the table below. Write your answers in the table:

<table>
<thead>
<tr>
<th>Day</th>
<th>Estimate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>R50 + R75 + R200 + R350 + R25</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>R25 + R175 + R50 + R320 + R90</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>R50 + R75 + R200 + R350 + R25</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>R120 + R55 + R180 + R245 + R25</td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>R60 + R150 + R140 + R200 + R125</td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td>R50 + R75 + R200 + R350 + R25</td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Work out the change.

To work out your change you can add on from what the things cost to how much money in notes you hand over.

Example:

Palesa buys food for R87,50
She pays with a R200 note.
What is her change?

Cost: R229,40
Pay with: [image of notes]

Cost: R305,60
Pay with: [image of notes]
More addition and subtraction to 999

Let us solve the problem.

Gugu collected 234 stickers. Mandla gave her 501 more stickers. How many stickers does she have now?

What is the question? How many stickers does she have now?

What is the key word? more

What are the numbers? 234 and 501

Let us show this with our base ten blocks.

This is what Lisa did to solve Gugu’s problem.

This is what Aakar did. He made a drawing.

How is Lisa’s placing of her base ten blocks similar to Aakar’s drawing.

Use the number in the problem to solve it below using two methods you have learnt so far.

Method 1

Method 2
Morning jobs.

Thembi collects items for the schools recycling projects. She collected 624 plastic bottles and 268 tin cans. How many items has she collected?

What is the question? ______________________________________

What are the numbers? 624 and 268

What is the key word? Tick the correct answer. The key word tells us to:
Add
Subtract

Make a drawing.

Use your own method to solve the problem.

The shop had 900 packets of sugar. After selling some packets, they had 659 packets of sugar left. How many packets did they sell?

What is the question? ______________________________________

What are the numbers? 900 and 659

What is the key word? Tick the correct answer. The key word tells us to:
Add
Subtract

Make a drawing.

Use your own method to solve the problem.
Addition and subtraction to 999 again

Look at the diagrams and describe it.

Complete the following:

a. 223 + 223 = ___________

b. 160 + 160 = ___________

c. 115 + 115 = ___________

d. 315 + 315 = ___________

e. 117 + 117 = ___________

f. 450 + 450 = ___________

g. 112 + _______ = 224

h. 116 + _______ = 232

Write the numbers

a. 12 more than 523 is ___________

b. 15 less than 540 is ___________

c. 20 more than 576 is ___________

d. 60 less than 590 is ___________

e. 537 less 29 is ___________

f. Half of 300 is ___________

g. Double 420 is ___________

h. Half of 600 is ___________

Add 125

<table>
<thead>
<tr>
<th>200</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>400</td>
<td>325</td>
</tr>
</tbody>
</table>

Date: ____________________
What makes a 1000?

a. 200 + 150 + 50 + □□□ = 1000	e. 25 + □□□ + 900 = 1000
b. 1000 = □□□ + □□□ + 400	f. □□□ + 700 + 50 = 1000
c. 670 + □□□ = 1000	g. 1000 = □□□ + □□□ + 500
d. 910 + 40 + □□□ = 1000	h. □□□ + 30 + 900 = 1000

Find the + and − number families

Example: 125 + 600 = 725 725 − 125 = 600 725 − 600 = 125

123 + 77 = □□□	□□□ − 77 = 123	□□□ − 123 = 77
650 + □□□ = 800	800 − 650 = □□□	□□□ + 650 = 800
1000 − 250 = □□□	1000 − □□□ = 250	250 + □□□ = 1000
56 + □□□ = 300	300 − □□□ = 56	□□□ + 56 = □□□
820 + □□□ = 1000	1000 − □□□ = 820	1000 − 820 = □□□

Add and take away tens and hundreds

a. Tens and hundreds

78 + 10 =	149 + 10 =	456 + 100 =	987 + 10 =
636 + 100 =	801 + 100 =	727 + 100 =	612 + 10 =
456 − 10 =	749 − 100 =	829 − 100 =	987 − 10 =
875 + 10 =	709 − 100 =	815 + 10 =	903 − 100 =

b. Whole tens (Multiples of 10)

150 − 30 =	190 − 60 =	175 − 50 =	990 − 80 =
210 + 90 =	335 + 60 =	660 + 50 =	812 + 60 =
256 − 50 =	320 − 30 =	785 − 60 =	999 − 90 =
567 + 37 =	671 + 90 =	832 + 80 =	928 + 80 =

Solve the following:

| 925 + 53 = | 571 + 202 = | 786 + 75 = | 903 + 95 = |

Teacher: Sign: Date:
Measurement puzzles

Find the area
How many squares this size □ do you need to completely cover each figure? Use your own way to work it out. You can draw squares on the pictures to help you work it out.

a. □□□□□□□□□□□

b. □□□□□□□□□□□

c. □□□□□□□□□□□

d. □□□□□□□□□□□

Solve the riddle

You want to measure out exactly 4 litres of water. You have only two containers: one holds 3 litres and the other 5 litres. How do you do it?

Clue: there are at least two possible ways.
What do you see?

Three blocks are glued together as in this picture.

If you pick up the joined together blocks how many squares do you count on the outside? ________

Count the cubes

How many cubes make up this shape? ______________

Challenge: a time riddle

Clues

You have two sand timers.

One measures exactly 7 minutes and the other measures exactly 11 minutes.

How can you use the timers to find out when exactly 15 minutes has passed?

__

__

__

Check! Compare! Correct!
Number patterns: tens up to 900

Let us count in tens from 810 to 900.

<table>
<thead>
<tr>
<th>801</th>
<th>802</th>
<th>803</th>
<th>804</th>
<th>805</th>
<th>806</th>
<th>807</th>
<th>808</th>
<th>809</th>
<th>810</th>
</tr>
</thead>
<tbody>
<tr>
<td>811</td>
<td>812</td>
<td>813</td>
<td>814</td>
<td>815</td>
<td>816</td>
<td>817</td>
<td>818</td>
<td>819</td>
<td>820</td>
</tr>
<tr>
<td>821</td>
<td>822</td>
<td>823</td>
<td>824</td>
<td>825</td>
<td>826</td>
<td>827</td>
<td>828</td>
<td>829</td>
<td>830</td>
</tr>
<tr>
<td>831</td>
<td>832</td>
<td>833</td>
<td>834</td>
<td>835</td>
<td>836</td>
<td>837</td>
<td>838</td>
<td>839</td>
<td>840</td>
</tr>
<tr>
<td>841</td>
<td>842</td>
<td>843</td>
<td>844</td>
<td>845</td>
<td>846</td>
<td>847</td>
<td>848</td>
<td>849</td>
<td>850</td>
</tr>
<tr>
<td>851</td>
<td>852</td>
<td>853</td>
<td>854</td>
<td>855</td>
<td>856</td>
<td>857</td>
<td>858</td>
<td>859</td>
<td>860</td>
</tr>
<tr>
<td>861</td>
<td>862</td>
<td>863</td>
<td>864</td>
<td>865</td>
<td>866</td>
<td>867</td>
<td>868</td>
<td>869</td>
<td>870</td>
</tr>
<tr>
<td>871</td>
<td>872</td>
<td>873</td>
<td>874</td>
<td>875</td>
<td>876</td>
<td>877</td>
<td>878</td>
<td>879</td>
<td>880</td>
</tr>
<tr>
<td>881</td>
<td>882</td>
<td>883</td>
<td>884</td>
<td>885</td>
<td>886</td>
<td>887</td>
<td>888</td>
<td>889</td>
<td>890</td>
</tr>
<tr>
<td>891</td>
<td>892</td>
<td>893</td>
<td>894</td>
<td>895</td>
<td>896</td>
<td>897</td>
<td>898</td>
<td>899</td>
<td>900</td>
</tr>
</tbody>
</table>

What patterns do the circled numbers show us?

Circled in red: Counting in ______.

Write down the pattern:

Circled in green: Counting in ______.

Write down the pattern:

Calculate.

a. $874 + 10 + 10 + 10 = \underline{_______}$

b. $858 - 10 - 10 - 10 - 10 = \underline{_______}$

c. $845 + 10 + 10 = \underline{_______}$

d. $858 - 10 - 10 - 10 = \underline{_______}$

e. $836 + 10 = \underline{_______}$

f. $866 - 10 - 10 = \underline{_______}$

g. $892 + 10 + 10 + 10 = \underline{_______}$

h. $87 - 10 - 10 - 10 = \underline{_______}$

i. $880 + 10 + 10 = \underline{_______}$

j. $855 - 10 = \underline{_______}$
How many sticks?

There are ten sticks in a bundle.

<table>
<thead>
<tr>
<th>1</th>
<th>= ________ sticks</th>
<th>10</th>
<th>= ________ sticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>= ________ sticks</td>
<td>20</td>
<td>= ________ sticks</td>
</tr>
<tr>
<td>3</td>
<td>= ________ sticks</td>
<td>30</td>
<td>= ________ sticks</td>
</tr>
<tr>
<td>4</td>
<td>= ________ sticks</td>
<td>40</td>
<td>= ________ sticks</td>
</tr>
<tr>
<td>5</td>
<td>= ________ sticks</td>
<td>50</td>
<td>= ________ sticks</td>
</tr>
<tr>
<td>6</td>
<td>= ________ sticks</td>
<td>60</td>
<td>= ________ sticks</td>
</tr>
<tr>
<td>7</td>
<td>= ________ sticks</td>
<td>70</td>
<td>= ________ sticks</td>
</tr>
<tr>
<td>8</td>
<td>= ________ sticks</td>
<td>80</td>
<td>= ________ sticks</td>
</tr>
<tr>
<td>9</td>
<td>= ________ sticks</td>
<td>90</td>
<td>= ________ sticks</td>
</tr>
<tr>
<td>10</td>
<td>= ________ sticks</td>
<td>100</td>
<td>= ________ sticks</td>
</tr>
</tbody>
</table>

Rows of sticks.

There are ten bundles of sticks in a row = 100 sticks

1 row of 10 bundles = 100 sticks

2 rows of 10 bundles = ________ sticks

4 rows of 10 bundles = ________ sticks

10 rows of 10 bundles = ________ sticks

How many bundles?

700 sticks make ________ bundles.

900 sticks make ________ bundles.

1000 sticks make ________ bundles.
Round off to the nearest 10.

We did some rounding off in a previous worksheet. Look at this number line and explain to your friend how you will round off to the nearest ten.

Remember you should look at the units when rounding off to the nearest 10.

Round off to the nearest 10.

114 rounded off is? ______ 117 rounded off is? ______

159 rounded off is? ______ 151 rounded off is? ______

Draw your own number line.

195

945
Round off to the nearest 10.

Before you round off:

a. write down between which two tens the number to be rounded off is.

b. show with an arrow more or less where this number to be rounded off will be on the number line.

a. 128 rounded off to the nearest ten is 130

b. 877

c. 901

d. 566

e. 999

Round the following numbers off to the nearest 10.

a. 161
b. 583
c. 415
d. 848
e. 612

f. 230
g. 327
h. 989
i. 534
j. 748

How many R10 notes do I need?

Mbali and her 8 friends are going to the school’s fun day. The fun day costs R4 per person. Mbali saved money and offered to pay for her friends. She went to the ATM to withdraw money. The ATM only gives notes. How many R10 notes does she need?
Multiplication and division: fives up to 100

Complete the flow diagram.

Complete the table below:

<table>
<thead>
<tr>
<th>×</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Calculate:

\[12 \times 5 = (10 + 2) \times 5 = 50 + 10 = 60\]

\[13 \times 5 = (10 + 3) \times 5 = 50 + 15 = 50 + 10 + 5 = 65\]
Solve the following problems:

A vegetable garden has 14 rows of plants. Every row has the same number of plants. If there is a total of 70 plants, how many plants are there in each row?

David sells bags of oranges. He puts five oranges in each bag. He has 85 oranges. How many bags can he fill?
Number patterns: fives up to 1000

Let us count in fives from 805 to 900.

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
<td>802</td>
<td>803</td>
<td>804</td>
<td>805</td>
<td>806</td>
<td>807</td>
<td>808</td>
<td>809</td>
<td>810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>811</td>
<td>812</td>
<td>813</td>
<td>814</td>
<td>815</td>
<td>816</td>
<td>817</td>
<td>818</td>
<td>819</td>
<td>820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>821</td>
<td>822</td>
<td>823</td>
<td>824</td>
<td>825</td>
<td>826</td>
<td>827</td>
<td>828</td>
<td>829</td>
<td>830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>831</td>
<td>832</td>
<td>833</td>
<td>834</td>
<td>835</td>
<td>836</td>
<td>837</td>
<td>838</td>
<td>839</td>
<td>840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>841</td>
<td>842</td>
<td>843</td>
<td>844</td>
<td>845</td>
<td>846</td>
<td>847</td>
<td>848</td>
<td>849</td>
<td>850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>851</td>
<td>852</td>
<td>853</td>
<td>854</td>
<td>855</td>
<td>856</td>
<td>857</td>
<td>858</td>
<td>859</td>
<td>860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>861</td>
<td>862</td>
<td>863</td>
<td>864</td>
<td>865</td>
<td>866</td>
<td>867</td>
<td>868</td>
<td>869</td>
<td>870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>871</td>
<td>872</td>
<td>873</td>
<td>874</td>
<td>875</td>
<td>876</td>
<td>877</td>
<td>878</td>
<td>879</td>
<td>880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>881</td>
<td>882</td>
<td>883</td>
<td>884</td>
<td>885</td>
<td>886</td>
<td>887</td>
<td>888</td>
<td>889</td>
<td>890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>891</td>
<td>892</td>
<td>893</td>
<td>894</td>
<td>895</td>
<td>896</td>
<td>897</td>
<td>898</td>
<td>899</td>
<td>900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What patterns do the circled and shaded numbers show us?

| Circled in blue: | Counting in ______________________. |
| Write down the pattern: |
| Circled in purple: | Counting in ______________________. |
| Write down the pattern: |

Calculate.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 875 + 5 + 5 + 5 = ____</td>
<td>b. 850 - 5 - 5 - 5 = ____</td>
<td>c. 845 + 5 + 5 = ____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 830 - 5 - 5 - 5 = ____</td>
<td>e. 886 + 5 = ____</td>
<td>f. 846 - 5 - 5 = ____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. 802 + 5 + 5 + 5 = ____</td>
<td>h. 801 - 5 = ____</td>
<td>i. 853 - 5 - 5 - 5 = ____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fill in the missing numbers.

What is the difference between the green and purple numbers in the same row?

Complete the patterns.

Do you notice the pattern? Describe it.

963, 968, 973, 978, 983,		
944, 949, 954, 959, 964,		
921, 926, 931, 936, 941,		
956, 951, 946, 941, 936,		
982, 987, 992, 997,		
927, 922, 917, 912, 907,		
More about symmetry

Mirror, mirror.

Play with a partner using one of the sets of tiling puzzles (with 14 pieces) from Cut-out 10.

Each player has half of the pieces (7 pieces) of tiling puzzle shapes.

No piece must be the same.

Draw a line along the middle of a piece of paper. This will be the "line of reflection".

The first player places one of his or her pieces next to the line.

The second player now puts its reflection on the other side of the line. It must touch the line or one of the already placed shapes.

Continue until all the pieces are used.

Draw the other side of the shape.

Show the line of symmetry.

Example:

Draw the lines of symmetry on the following:

Tick the shapes that have the correct lines of symmetry.
Number patterns: twos up to 900

Let us count in twos from 802 to 900.

<table>
<thead>
<tr>
<th>801</th>
<th>802</th>
<th>803</th>
<th>804</th>
<th>805</th>
<th>806</th>
<th>807</th>
<th>808</th>
<th>809</th>
<th>810</th>
</tr>
</thead>
<tbody>
<tr>
<td>811</td>
<td>812</td>
<td>813</td>
<td>814</td>
<td>815</td>
<td>816</td>
<td>817</td>
<td>818</td>
<td>819</td>
<td>820</td>
</tr>
<tr>
<td>821</td>
<td>822</td>
<td>823</td>
<td>824</td>
<td>825</td>
<td>826</td>
<td>827</td>
<td>828</td>
<td>829</td>
<td>830</td>
</tr>
<tr>
<td>831</td>
<td>832</td>
<td>833</td>
<td>834</td>
<td>835</td>
<td>836</td>
<td>837</td>
<td>838</td>
<td>839</td>
<td>840</td>
</tr>
<tr>
<td>841</td>
<td>842</td>
<td>843</td>
<td>844</td>
<td>845</td>
<td>846</td>
<td>847</td>
<td>848</td>
<td>849</td>
<td>850</td>
</tr>
<tr>
<td>851</td>
<td>852</td>
<td>853</td>
<td>854</td>
<td>855</td>
<td>856</td>
<td>857</td>
<td>858</td>
<td>859</td>
<td>860</td>
</tr>
<tr>
<td>861</td>
<td>862</td>
<td>863</td>
<td>864</td>
<td>865</td>
<td>866</td>
<td>867</td>
<td>868</td>
<td>869</td>
<td>870</td>
</tr>
<tr>
<td>871</td>
<td>872</td>
<td>873</td>
<td>874</td>
<td>875</td>
<td>876</td>
<td>877</td>
<td>878</td>
<td>879</td>
<td>880</td>
</tr>
<tr>
<td>881</td>
<td>882</td>
<td>883</td>
<td>884</td>
<td>885</td>
<td>886</td>
<td>887</td>
<td>888</td>
<td>889</td>
<td>890</td>
</tr>
<tr>
<td>891</td>
<td>892</td>
<td>893</td>
<td>894</td>
<td>895</td>
<td>896</td>
<td>897</td>
<td>898</td>
<td>899</td>
<td>900</td>
</tr>
</tbody>
</table>

What patterns do the circled and shaded numbers show us?

Circed in blue:

Write down the pattern:

Coloured in green:

Write down the pattern:

Calculate.

<table>
<thead>
<tr>
<th>a. 872 + 2 + 2 + 2 =</th>
<th>b. 820 – 2 – 2 – 2 =</th>
<th>c. 844 + 2 + 2 =</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. 872 + 2 + 2 + 2 =</td>
<td>b. 820 – 2 – 2 – 2 =</td>
<td>c. 844 + 2 + 2 =</td>
</tr>
<tr>
<td>874</td>
<td>816</td>
<td>848</td>
</tr>
</tbody>
</table>

Odds and evens.

a. Draw a (x) next to the odd numbers and a (✓) next to the even numbers.

914 916 923 925 916 929 916 911 915

908 917 925 931 930 910 909 922 933

b. Answer even or odd.

Add two odd numbers. You get an ___________ number.
Add two even numbers. You get an ___________ number.
You add three odd numbers. You get an ___________ number.

Planting trees.

This is one way to plant out 48 trees in equal rows.

We can write: 2 × 24 = 48 (2 rows of 24 trees = 48) or 48 ÷ 2 = 24 (48 trees put out in 2 equal rows gives 24 trees in a row). Count the rows and the trees in each picture below. Write a × and a ÷ number sentence to match.

<table>
<thead>
<tr>
<th>a. ______ × ______ = ______ ÷ ______ =</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ______ × ______ = ______ ÷ ______ =</td>
</tr>
<tr>
<td>a. ______ × ______ = ______ ÷ ______ =</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. ______ × ______ = ______ ÷ ______ =</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. ______ × ______ = ______ ÷ ______ =</td>
</tr>
<tr>
<td>b. ______ × ______ = ______ ÷ ______ =</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c. ______ × ______ = ______ ÷ ______ =</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. ______ × ______ = ______ ÷ ______ =</td>
</tr>
<tr>
<td>c. ______ × ______ = ______ ÷ ______ =</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d. ______ × ______ = ______ ÷ ______ =</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. ______ × ______ = ______ ÷ ______ =</td>
</tr>
<tr>
<td>d. ______ × ______ = ______ ÷ ______ =</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e. ______ × ______ = ______ ÷ ______ =</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. ______ × ______ = ______ ÷ ______ =</td>
</tr>
<tr>
<td>e. ______ × ______ = ______ ÷ ______ =</td>
</tr>
</tbody>
</table>

Calculate.

a. 872 + 2 + 2 + 2 =
b. 820 – 2 – 2 – 2 =
c. 844 + 2 + 2 =
d. 832 – 2 – 2 – 2 =
e. 883 + 2 =
f. 842 – 2 – 2 =
g. 801 + 2 + 2 + 2 =
h. 815 – 2 =
i. 846 – 2 – 2 =
Term 4

Multiplication and division:

twos up to 100

Complete the flow diagram.

```
<table>
<thead>
<tr>
<th>Input</th>
<th>Rule</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>×2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Complete the table below:

<table>
<thead>
<tr>
<th>×2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

Calculate:

- **12 × 2**

 \[= (10 + 2) \times 2\]

 \[= 20 + 4\]

 \[= 24\]

- **18 × 2**

 \[= (10 + 8) \times 2\]

 \[= 20 + 16\]

 \[= 36\]

- **11 × 2**

```
<table>
<thead>
<tr>
<th>Input</th>
<th>Rule</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Solve the following problems:

A vegetable garden has **32** rows of plants.

Each row has **2** plants.

How many plants are there in the garden?

A vegetable garden has **40** rows of plants.

Every row has the same number of plants.

If there are a total of 80 plants, how many plants are there in each row?
Multiplication and division: threes up to 100

Complete the flow diagram.

- **Input:** 1, 3, 5, 7, 9
 Rule: × 3
 Output:
 - 2
 - 4
 - 6
 - 8
 - 10

Complete the table below:

<table>
<thead>
<tr>
<th>× 3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Calculate:

- **12 × 3**
 - **Input:** 12
 - **Rule:** × 3
 - **Output:** 36

- **17 × 3**
 - **Input:** 17
 - **Rule:** × 3
 - **Output:** 51

- **11 × 3**
 - **Input:** 11
 - **Rule:** × 3
 - **Output:** 33

- **19 × 3**
 - **Input:** 19
 - **Rule:** × 3
 - **Output:** 57

Solve the following problems:

Marlene has 30 sweets. This is ten times more than what Jacob has. How many sweets does Jacob have?

A vegetable garden has 29 rows of plants. Each row has 3 plants. How many plants are there in the garden?

- **63 ÷ 3**
 - **Input:** 63
 - **Rule:** ÷ 3
 - **Output:** 21

- **98 ÷ 3**
 - **Input:** 98
 - **Rule:** ÷ 3
 - **Output:** 32 rem 2
Let us count in threes from 03 to 09.

What patterns do the circled and shaded numbers show us?

Colour the missing number blocks green. Colour the white blocks with numbers in them red. What pattern do you see?

Complete the patterns.

Write down the pattern:

a. Add 4 threes to 01.

b. Add 5 threes to 09.

c. Subtract 4 threes from 07.

d. Subtract 2 threes from 02.

Sign:

e. Subtract 3 threes from 32.

f. Add 2 threes to 98.

g. Add 3 threes to 98.

h. Add 5 threes to 73.

i. Subtract 3 threes from 947.

Teacher:

a.

b.

c.

d.

e.

Complete the flow diagram.

Term 4

Complete the table below:

Calculate:

12 × 4 = (10 + 2) × 4

Tony has 36 sweets. He has 13 × 4 oranges.

Solve the following problems:

89 × 4

802 + 3 + 3 + 2 =
Let us count in threes from 9.

8
9
10
11
12
13
14
15
16
17
18
19
20

c. Subtract 4 threes from 975.

d. Subtract 3 threes from 947.

e. Add 2 threes to 32.

f. Add 2 threes to 99.

What patterns do the circled and shaded numbers show us?

Circled in orange: Counting in ______________________.

Write down the pattern:

Complete the patterns.

Write down the pattern:

a. Add 4 threes to 98.

b. Add 5 threes to 973.

c. Subtract 4 threes from 975.

d. Subtract 3 threes from 947.

e. Add 2 threes to 32.

David sells packets of oranges. He puts four oranges in each packet.

He has 88 oranges.

How many packets can he fill?
Number patterns: fours up to 1000

Let us count in fours from 804 to 900.

<table>
<thead>
<tr>
<th>801</th>
<th>802</th>
<th>803</th>
<th>804</th>
<th>805</th>
<th>806</th>
<th>807</th>
<th>808</th>
<th>809</th>
<th>810</th>
</tr>
</thead>
<tbody>
<tr>
<td>811</td>
<td>812</td>
<td>813</td>
<td>814</td>
<td>815</td>
<td>816</td>
<td>817</td>
<td>818</td>
<td>819</td>
<td>820</td>
</tr>
<tr>
<td>821</td>
<td>822</td>
<td>823</td>
<td>824</td>
<td>825</td>
<td>826</td>
<td>827</td>
<td>828</td>
<td>829</td>
<td>830</td>
</tr>
<tr>
<td>831</td>
<td>832</td>
<td>833</td>
<td>834</td>
<td>835</td>
<td>836</td>
<td>837</td>
<td>838</td>
<td>839</td>
<td>840</td>
</tr>
<tr>
<td>841</td>
<td>842</td>
<td>843</td>
<td>844</td>
<td>845</td>
<td>846</td>
<td>847</td>
<td>848</td>
<td>849</td>
<td>850</td>
</tr>
<tr>
<td>851</td>
<td>852</td>
<td>853</td>
<td>854</td>
<td>855</td>
<td>856</td>
<td>857</td>
<td>858</td>
<td>859</td>
<td>860</td>
</tr>
<tr>
<td>861</td>
<td>862</td>
<td>863</td>
<td>864</td>
<td>865</td>
<td>866</td>
<td>867</td>
<td>868</td>
<td>869</td>
<td>870</td>
</tr>
<tr>
<td>871</td>
<td>872</td>
<td>873</td>
<td>874</td>
<td>875</td>
<td>876</td>
<td>877</td>
<td>878</td>
<td>879</td>
<td>880</td>
</tr>
<tr>
<td>881</td>
<td>882</td>
<td>883</td>
<td>884</td>
<td>885</td>
<td>886</td>
<td>887</td>
<td>888</td>
<td>889</td>
<td>890</td>
</tr>
<tr>
<td>891</td>
<td>892</td>
<td>893</td>
<td>894</td>
<td>895</td>
<td>896</td>
<td>897</td>
<td>898</td>
<td>899</td>
<td>900</td>
</tr>
</tbody>
</table>

What patterns do the circled and shaded numbers show us?

Circled in green: Counting in ______________________.

Write down the pattern:

Circled in purple: Counting in ______________________.

Write down the pattern:

Complete the patterns.

a. Add 4 fours to 980.

b. Add 5 fours to 971.

c. Subtract 4 fours from 963.

d. Subtract 3 fours from 927.

e. Add 2 fours to 938.

Fill in the missing numbers.

Teacher: Colour the missing number blocks green. Colour the white blocks with numbers in them red. What pattern do you see?
Equal parts of a whole

One half, any way you cut it.

Cut out some rectangles from coloured paper (from Cut-out 11).

Explore different ways to make one half.

1. Fold a paper rectangle in half lengthwise. Cut the paper in half on the fold. Both pieces are exactly the same size. Each piece is one half \(\frac{1}{2} \) of the original rectangle.

2. Fold another paper rectangle in half on the diagonal. Cut the paper in half on the fold. Both pieces are exactly the same size. Each piece is one half of the original piece of paper.

3. What is another way to divide the paper into two equal parts? Explore with paper and scissors, and then sketch in the line where you fold and cut.

More equal parts of a whole.

When we divide something into 2 equal parts we call the parts halves.

When we divide something into 3 equal parts we call the parts thirds.

When we divide something into 4 equal parts we call the parts fourths.

When we divide something into 5 equal parts we call the parts fifths.

Sandwiches for lunch.

Thabo and his 3 friends make lots of sandwiches for lunch. They cut them up into fourths or quarters. This means they cut them into 4 equal pieces. Here is one way. Show 3 other ways they can do this.

Dividing into fourths.

When we cut something into quarters \(\frac{1}{4} \)s, we divide it into 4 equal parts. Tick (✓) the pictures below that show quarters or fourths.
Fraction problems

Term 4

Discuss the fractions with your friends.

Solve the following problems by answering the questions and making drawings.

a. The netball coach gives half an orange to each player. There are 14 players.
 How many oranges does she need? __
 What is the question? ___
 What are the numbers or fractions in the problem? _________________________
 What is the key word? ___
 Draw a picture.
 What is the answer? __

b. My mother gave me and my eleven friends each a quarter of an apple.
 How many apples does she need? __
 What are the numbers or fractions in the problem? _________________________
 What is the key word? ___
 Draw a picture.
 What is the answer? __

c. At the school fete they sold cakes cut up into three pieces each.
 They sold pieces of cake to 24 people.
 How many cakes did they sell? ___
 What are the numbers or fractions in the problem? _________________________
 What is the key word? ___
 Draw a picture.
 What is the answer? __

The key word is the word that will help me to choose the correct operation.
3-D objects

Look at the pictures.
Which group shows balls, cylinders and boxes.

A

B

C

Find two pictures of each and paste them below.

Underline the correct answer.

a. A tomato is ball/box/cylinder-shaped.
b. A drinking glass is ball/box/cylinder-shaped.
c. A book is ball/box/cylinder-shaped.

Straight and curved.
Some solid objects only have flat surfaces. Others have curved surfaces.

A cylinder has two flat faces and one curved face.
A cone has one flat face and one curved face.
A sphere has curves only, in every direction.

Rolling
Think about how a cylinder, cone, or sphere can roll.

Answer these questions about the 3 objects:

a. Which one cannot roll very far?
b. Which one can roll only in a straight line?
c. Which one can roll in any direction?

What is a net?
A flat shape that can fold up to make a solid figure is called a net.

Write the letter of the net that can fold up to make a cone. __________
Write the letter of the net that can fold up to make a cylinder. __________
More fractions

Name the fractions.

Write the fraction for the pictures below.

a. What fraction is red?

b. What fraction is green?

c. What fraction is blue?

d. What fraction is yellow?

Answer the questions.

a. Sizwe has four pieces of chocolate. He gives one piece to his friend. What fraction of the chocolates does he have left?

b. Yasmin has two oranges. She shares one with Ann. What fraction does she have left?

c. Maria buys 5 chocolate bars. She keeps 1 for herself, gives 2 to Mohamed, and 2 to her brother. What fraction does Maria keep for herself?

Fraction wall.

Each row is divided into equal parts. The bottom row is divided into twelfths (\(\frac{1}{12}\)). Label the other rows with the correct fraction.

Use your ruler or a straight edge from a piece of paper to find which fractions are equal, and to help you answer these questions.

From the fraction wall, find all the different ways to make:

a. one half \(\frac{1}{2}\)

b. one whole (1)

c. three quarters \(\frac{3}{4}\)

Check! Compare! Correct!
More grouping and sharing

Quick calculations.

Look for links.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Calculation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$30 \div 3$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$150 \div 3$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$120 \div 4$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$400 \div 10$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$36 \div 2$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$15 \div 3$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$60 \div 3$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$24 \div 4$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$24 \div 8$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$200 \div 5$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$72 \div 2$</td>
<td></td>
<td>______</td>
</tr>
<tr>
<td>$72 \div 4$</td>
<td></td>
<td>______</td>
</tr>
</tbody>
</table>

Share out what’s left.

Jabu and Lebo want to share 13 chocolate pieces. How many pieces do they each get?

They can only share 12 whole squares, they get six each. The remaining piece they break in half, so each has $6 \frac{1}{2}$ pieces.

a. At a party 25 sugar strips are shared between 10 children. Share out exactly! Draw pictures to help you.

b. Share 37 strips between 4 children.

c. Share 48 strips between 5 children.

d. Share 73 strips between 10 children.

Each one gets ______ strips.
Tangram fractions

The Tangram is an old Chinese puzzle made up of 7 flat shapes, called tans, all of which are put together to form various shapes.

Fractions in the tangram.

1. Look at the tangram puzzle. What fraction of the whole square is each of the two large triangles? (Pink in this picture.)

2. If you fold one of the large triangles into two equal pieces, each piece is the same size as the medium size triangle (yellow in the picture). What fraction of the whole square is the medium triangle?

3. If you fold the medium triangle into two equal pieces, each piece is the same size as the two small triangles. (Green in the picture.) What fraction of the whole square is each small triangle?

4. You can put two small triangles together to make the small square. What fraction of the whole square is the small square (blue in the picture)?

5. You can put two small triangles together to make the parallelogram. What fraction of the whole square is the parallelogram?

Using the tangram.

Cut out the tangram from Cut-out 12 and label each piece with its fraction of the whole square.

Put your name on the back of each piece, so you can get your own pieces back at the end of the game.

Fair shares fraction game.

Play with 4 (or 8) players using your tangram pieces.

1. Players take turns being the dealer.

2. The dealer decides what fraction of the whole tangram each player must put into the kitty.

3. Each player guesses whether the coin will come up heads or tails, then the dealer flips the coin.

4. The dealer then shares the kitty among those who guessed right. (He or she may have to trade one or more pieces for other pieces of equal value.)

5. Any remainder that cannot be shared stays in the kitty for the next round.

6. All players check to see if the sharing is done correctly.

7. If a player finds an error, the dealer pays a penalty of \(\frac{1}{8} \) of the whole square to that player.

8. A player with no pieces may take any remainder from the kitty.

9. Play continues until each player has been dealer.
Measuring capacity

Use a plastic bottle container and a cup.

Make a litre.

Find a way to make a litre using different amounts of liquid.

Write a number sentence for each way.

<table>
<thead>
<tr>
<th>Number sentence</th>
<th>500 ml + 500 ml = 1000 ml (1 l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 ml</td>
<td>500 ml</td>
</tr>
<tr>
<td>250 ml</td>
<td>250 ml</td>
</tr>
<tr>
<td>200 ml</td>
<td>200 ml</td>
</tr>
<tr>
<td>100 ml</td>
<td>100 ml</td>
</tr>
</tbody>
</table>

We measure small amounts of liquid in millilitres (ml).

This measuring cup for medicine contains 10 ml, which is about two teaspoons.

We measure larger amounts in litres (l).

There are one thousand millilitres in a litre.

How much liquid?

Find a way to make a litre using different amounts of liquid.

Write a number sentence for each way.

<table>
<thead>
<tr>
<th>Number sentence</th>
<th>= 1000 ml (1 l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 ml</td>
<td>500 ml</td>
</tr>
<tr>
<td>500 ml</td>
<td>500 ml</td>
</tr>
<tr>
<td>500 ml</td>
<td>500 ml</td>
</tr>
</tbody>
</table>

When we write metric symbols, we leave a small space between the last digit and the symbol. For example we write 3 l not 3L; 299 g not 299g; 15 km not 15km.
Bongi’s Juice Bar.

Make a litre. If Bongi uses one quarter \(\frac{1}{4} \) of a cup of juice and 2 cups of water:

<table>
<thead>
<tr>
<th>Jugs</th>
<th>One quarter (\frac{1}{4}) of a cup of juice</th>
<th>2 cups of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Work out how much juice and water Bongi uses for up to 5 jugs of juice.

<table>
<thead>
<tr>
<th>Jugs</th>
<th>Make a litre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{4}) cup of juice (\times 100) ml</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{4}) cup of juice (\times 200) ml</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{1}{4}) cup of juice (\times 250) ml</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{1}{4}) cup of juice (\times 50) ml</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{1}{4}) cup of juice (\times 50) ml</td>
</tr>
</tbody>
</table>

Thandi’s party is over. How much yellow juice is left? ____________ How much purple juice is left? ____________ Thandi mixes the two juices together. How many full jugs can she fill? _______ _______ _______

At the game. At half time each player drinks \(\frac{1}{4} \) of a litre of juice.

How many players can share?

<table>
<thead>
<tr>
<th>Litres and millilitres (ml)</th>
<th>1 litre</th>
<th>(\frac{1}{2}) litre</th>
<th>(\frac{1}{4}) litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 ml</td>
<td>1 litre</td>
<td>(\frac{1}{2}) litre</td>
<td>(\frac{1}{4}) litre</td>
</tr>
<tr>
<td>140 ml</td>
<td>1 litre</td>
<td>(\frac{1}{2}) litre</td>
<td>(\frac{1}{4}) litre</td>
</tr>
<tr>
<td>160 ml</td>
<td>1 litre</td>
<td>(\frac{1}{2}) litre</td>
<td>(\frac{1}{4}) litre</td>
</tr>
</tbody>
</table>

Tick (\(\times \)) the 3 amounts that add up to half a litre.

Which container can you use to measure and pour milk? Share 4 litres of milk between:

<table>
<thead>
<tr>
<th>Litres and millilitres (ml)</th>
<th>1 litre</th>
<th>2 litres</th>
<th>3 litres</th>
<th>4 litres</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 ml</td>
<td>1 litre</td>
<td>2 litres</td>
<td>3 litres</td>
<td>4 litres</td>
</tr>
<tr>
<td>140 ml</td>
<td>1 litre</td>
<td>2 litres</td>
<td>3 litres</td>
<td>4 litres</td>
</tr>
<tr>
<td>160 ml</td>
<td>1 litre</td>
<td>2 litres</td>
<td>3 litres</td>
<td>4 litres</td>
</tr>
</tbody>
</table>

How many players can share?

<table>
<thead>
<tr>
<th>Litres and millilitres (ml)</th>
<th>1 litre</th>
<th>(\frac{1}{2}) litre</th>
<th>(\frac{1}{4}) litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 ml</td>
<td>1 litre</td>
<td>(\frac{1}{2}) litre</td>
<td>(\frac{1}{4}) litre</td>
</tr>
<tr>
<td>140 ml</td>
<td>1 litre</td>
<td>(\frac{1}{2}) litre</td>
<td>(\frac{1}{4}) litre</td>
</tr>
<tr>
<td>160 ml</td>
<td>1 litre</td>
<td>(\frac{1}{2}) litre</td>
<td>(\frac{1}{4}) litre</td>
</tr>
</tbody>
</table>

Milk is good for you!

Share 4 litres of milk between:

<table>
<thead>
<tr>
<th>Each child gets litres</th>
<th>8 children</th>
<th>16 children</th>
<th>12 children</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 litre</td>
<td>1 litre</td>
<td>(\frac{1}{2}) litre</td>
<td>(\frac{1}{4}) litre</td>
</tr>
<tr>
<td>2 litres</td>
<td>2 litres</td>
<td>(\frac{3}{2}) litres</td>
<td>(\frac{3}{4}) litres</td>
</tr>
<tr>
<td>3 litres</td>
<td>3 litres</td>
<td>(\frac{3}{2}) litres</td>
<td>(\frac{3}{4}) litres</td>
</tr>
<tr>
<td>4 litres</td>
<td>4 litres</td>
<td>(\frac{3}{2}) litres</td>
<td>(\frac{3}{4}) litres</td>
</tr>
</tbody>
</table>
Cut-out 7
<table>
<thead>
<tr>
<th>Cut-out 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C</td>
</tr>
<tr>
<td>I_{OC}</td>
</tr>
<tr>
<td>R_{Is}</td>
</tr>
<tr>
<td>R_{IOs}</td>
</tr>
<tr>
<td>R_{IOOs}</td>
</tr>
</tbody>
</table>
Cut-out 9

<table>
<thead>
<tr>
<th>RIOO</th>
<th>RIOO</th>
<th>RIOO</th>
<th>RIOO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIOO</td>
<td>RIOO</td>
<td>RIOO</td>
<td>RIOO</td>
</tr>
<tr>
<td>RIO</td>
<td>RIO</td>
<td>RIO</td>
<td>RIO</td>
</tr>
<tr>
<td>RIO</td>
<td>RIO</td>
<td>RIO</td>
<td>RIO</td>
</tr>
<tr>
<td>RIO</td>
<td>RIO</td>
<td>RIO</td>
<td>RIO</td>
</tr>
</tbody>
</table>

Diagram:

- RI
- IOc
- Ic

1c 10c 10c 10c 10c 10c 10c 10c 10c
Cut-out 12